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Abstract

Particle track reconstruction is a challenging pattern recognition task in high energy
physics experiments such as those at the Large Hadron Collider. Traditional algo-
rithmic solutions rely on hand-engineered features and metrics, do not parallelize
easily, and scale poorly with detector occupancy. In this paper we present our work
to identify and evaluate solutions based on modern machine learning techniques
such as deep neural networks. Models have been developed which draw inspiration
from computer-vision tasks to identify tracks and estimate track trajectory param-
eters in image-like detector data. Additional models have been developed which
can operate on a continuous distribution of spacepoint measurements to construct
tracks in a structured way. We will evaluate these ideas on toy detector data and
semi-realistic simulated tracking data and discuss their strengths and limitations
for application in tracking applications.

1 Introduction

In high energy physics experiments such as ATLAS [1] and CMS [2] at the Large Hadron Collider [3]
(LHC), a challenging but essential aspect of data processing is the measurement of charged particle
trajectories in tracking detectors. Highly granular silicon-based sensors collect tens of thousands
of position measurements (“spacepoints’”) from thousands of particles in every proton-proton beam
collision event, as illustrated in figure [I] Tracking algorithms partition these spacepoints into
disjoint groups (“tracks”) and fit parametrized trajectories to extract particle kinematics and locations
of production vertices. These results are combined with measurements from additional detector
systems to construct a complete physical model of the particles in an event. Large datasets of these
reconstructed events are then analyzed to test the fundamental laws of nature.

Traditional tracking algorithms have been used with great success in the experiments thus far but
suffer from some limitations that motivate new ways of thinking. The algorithms are inherently serial,
rely on linear dynamics models, and scale poorly with detector occupancy. In fact, in the expected
conditions of data taking in 2025 (the so-called High Luminosity LHC), tracking algorithm code
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Figure 1: Distribution of particle spacepoints in a particle collision event in a generic simulated
HL-LHC tracking detector.

will consume a disproportionate amount of offline computing resources that cannot be supplied with
expected computing budgets.

Machine learning methods such as deep neural networks have some promising characteristics that
could prove effective for high energy physics tracking. Neural networks are known to be very good
at finding patterns and modeling non-linear dependencies in data. They also involve highly regular
computation that can run effectively on parallel architectures such as GPUs. While there exists
some literature from the 1980s-1990s studying neural network algorithms for tracking [4—6], modern
techniques in deep learning have yet to be studied extensively in this regime.

We have explored two categories of approaches for machine learning solutions, image-based and
point-based models. In the image-based models, inspiration is drawn from computer vision techniques
such as semantic segmentation and image captioning, whereby we treat the detector data as an image
and apply convolutional and recurrent neural networks to detect tracks. In point-based models, we
use continuously distributed spacepoint measurements and structure them in a list or tree for learning
how to group them into track candidates.

2 Image-based approaches

We investigated the applicability of sequence-based and image-based models for the problem of
track-building on toy detector data in which spacepoints are binned in a 2D or 3D histogram [7]. An
LSTM model was developed which reads the layers of the detector as a sequence of pixel arrays and
emits a prediction for the correct location of a target track amidst background spacepoints. A similar
model using convolutions was developed which processes the entire detector image and classifies
pixels belonging to the target track. Several variations on these models were studied with toy data and
semi-realistic simulated track data under varying numbers of background tracks, with the toy data
results summarized in figure 2] The models showed good performance on toy datasets and promising
results on semi-realistic data that suggest neural networks are effective at recognizing particle track
patterns in detector data.

3 Point-based approaches

The discrete models explored thus far map nicely onto well-studied problems in computer vision and
sequence modeling. However, they face difficulties when scaling up to the realistic complexity of
LHC data, suffering from high dimensionality and sparsity. This motivates development of models
that properly utilize the structure of the data as points localized on detector layers. These points can
be structured as sequences, trees, or graphs for neural networks to learn representations on.

The first point-based approach utilizes a recurrent neural network as an iterative filter similar to a
Kalman Filter. The model is trained to read a sequence of points and predict the position of the point



Hit Classification accuracy

25 o8 T

06

Accuracy

04
0 ~— BILSTM

»—= ConvAE

»—+ ConvNN

*~+ LSTM

»—+ DeeplLSTM
% NL-LSTM

02

5 00
8 o 20 40 60 80 100

9 0 Average number of background tracks

3
4
detecto,», 5

6
Ayer

7

Figure 2: On the left is an example 3D toy data input with a target track shown as the red connected
points and an LSTM model prediction shown as colored surfaces. On the right is the spacepoint
classification accuracy of a variety of LSTM and convolutional models shown for varying numbers of
background tracks [7].

on the next detector layer. It can be used to build tracks by selecting the closest spacepoint to the
prediction or by implementing a combinatorial tree-search algorithm which considers plausible points
at every layer and searches until a complete track is found. The architecture used here is an LSTM
plus fully connected linear layer. An example trajectory and predictions from an ACTS [8] simulated
dataset are shown in figure 3| and the prediction errors are shown in figure 4, The RNN model
is observed to produce reasonable trajectory predictions after a sequence two to three spacepoint
measurements, though some asymmetry and tails in the error distributions show there may be some
limitations in the modeling that require further study.
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Figure 3: Example track measurements and RNN filter predictions in the ¢ (azimuth) and 2z coordi-
nates as a function of detector layer. The RNN filter model is shown to make reasonable predictions
after a sequence of about two spacepoints.

Another point-based method arranges all of the spacepoints of the detector in a sequence sorted
according to the cylindrical coordinates and feeds them into a recurrent network model which outputs
for every spacepoint a probability assignment vector of track classes. The target track classes are
similarly sorted according to coordinates. The architecture, shown in figure 5] has three layers of
bi-directional GRU units followed by a fully-connected layer and softmax activations to normalize the
probability predictions for every spacepoint. A toy data sample was used based on a 3D cylindrical
version of the TrackML RAMP challenge dataset [9] with random noise hits added. Figure E] shows
the assignment accuracy of the model and its dependence on the detector occupancy with 3D toy
cylindrical data. While the model performs well with low occupancy, there is seemingly room for
improvement as the accuracy degrades with increasing multiplicity. Still, this study demonstrates that
such a model can learn to arrange spacepoints into appropriately sorted candidates under particular
conditions. If such a model does not scale to a full event occupancy it may still be powerful in smaller
sections of a detector.
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Figure 4: Error in the RNN filter predictions on both training and test datasets. The histograms are
normalized to unit area. There is excellent agreement between training and test samples, though some
asymmetries and long non-Gaussian tails are observed.
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Figure 5: The multi-track spacepoint assignment model is a recurrent neural network that takes
as input the full set of spacepoint measurements in the detector and outputs a track probability
assignment matrix.

Conclusion

A variety of deep learning approaches for the problem of particle track reconstruction at high energy
physics experiments have been studied. Both image-based and point-based approaches show promise
in this problem. The point-based approaches seem to be the most suitable for scaling to full HL-
LHC data conditions because they exploit the structure of the data while avoiding the sparsity and
dimensionality of the image-based approaches.

Ongoing and future work in this area will involve careful evaluation of these methods and comparison
with traditional solutions, as well as further explorations into new types of models that exploit the
structure of the data. For the track filter model, it may be interesting to train a model to produce
distributions via parameterized probability density functions (e.g. Gaussian) for its spacepoint
predictions rather than just central values. Such an approach would allow a model to express
uncertainty and potentially produce more useful predictions. Next, the filter model needs to be
incorporated into a tree-search algorithm in order to demonstrate its capability to find tracks in
full collision events. For the multi-track spacepoint assignment model, the accuracy scaling with
occupancy should be further studied. Improvements may come from incorporating physics constraints
into its track assignment classes or by discovering more efficient and expressive ways to embed the
hit data. Graph neural networks [10] may be one powerful approach for modeling local relations
between spacepoints.
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Figure 6: Accuracies of the spacepoint sequence hit assignment model as the number of tracks is
increased. For 21 and 22 tracks no box interval is shown is because there is only a single sample.
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