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Abstract

Solar activity can interfere with the normal operation of GPS satellites, the power
grid, and space operations, but inadequate predictive models mean we have little
warning for the arrival of newly disruptive solar activity. Petabytes of data col-
lected from satellite instruments aboard the Solar Dynamics Observatory (SDO)
provide a high-cadence, high-resolution, and many-channeled dataset of solar
phenomena. Several challenging deep learning problems may be derived from
the data, including space weather forecasting (i.e., solar flares, solar energetic
particles, and coronal mass ejections). This work introduces a software framework,
FlareNet, for experimentation within these problems. FlareNet includes compo-
nents for the downloading and management of SDO data, visualization, and rapid
experimentation. The system architecture is built to enable collaboration between
heliophysicists and machine learning researchers on the topics of image regres-
sion, image classification, and image segmentation. We specifically highlight the
problem of solar flare prediction and offer insights from preliminary experiments.

1 Introduction

The violent release of solar magnetic energy – collectively referred to as “space weather" – is
responsible for a variety of phenomena that can disrupt technological assets. In particular, solar flares
(sudden brightenings of the solar corona) and coronal mass ejections (CMEs; the violent release of
solar plasma) can disrupt long-distance communications, reduce Global Positioning System (GPS)
accuracy, degrade satellites, and disrupt the power grid [5].

Predicting space weather is a challenging task because the release of magnetic energy stems from a
sudden catastrophic loss of equilibrium in an otherwise meta-stable system (akin to seismological
activity or the occurrence of lightning strikes). Current operational space weather relies on hand
tailored morphological analyses of the Sun’s magnetic field [9], but even ensemble models derived
from experts in the field perform close to a persistence baseline [3].

With the launch of the Solar Dynamics Observatory (SDO) [10] in 2010, we have access to a space-
based instrument collecting terabytes of full disk solar images on a daily basis. These high-cadence,
high-resolution, many-channeled images include maps of the solar magnetic and velocity fields
(magnetograms and dopplergrams), as well as images of the solar atmosphere using a variety of
wavelengths (see Figure 1 for examples).

The SDO dataset poses unique opportunities and challenges for deep learning. This work introduces
“FlareNet” as a deep learning framework for solar physics research to address the research pre-
conditions for modeling space weather. FlareNet includes functionality for data management, neural
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Figure 1: (a) The Helioseismic and Magnetic Imager (HMI; [11]) provides 4k X 4k (0.5 arcsec/pixel
resolution) full-disk images of surface magnetic field (vector and line-of-sight magnetograms) every
12 minutes and surface velocity (Dopplergrams) every 45 seconds. The yellow and red (green and
blue) pixels of the image denote magnetic fields pointing towards (away from) the observer. (b, c,
& d) The Atmospheric Imaging Assembly (AIA; [7]) captures 8 channels spanning UV and EUV
spectrum. These images are also 4k X 4k (0.6 arcsec/pixel resolution), taken at every 12 seconds.
Here we composite images captured by AIA for different spectra into the RGB color channels. (a)
shows wavelengths observing the surface (red), chromosphere (green), and corona (blue). (b) shows
three wavelengths observing the corona. (c) shows three wavelengths observing the hot/active corona.
Collectively these images capture the state of visible solar activity.

network specification, training, and visualization of solar phenomena. By formalizing this complete
research environment, we can simultaneously leverage the domain knowledge of physical scientists
and the neural network architecture experience of computer scientists. During training, a collection of
visualization scripts run to help physical scientists interpret the relationships captured by the neural
network (see Figure 2). Since the data is fully modeled within FlareNet, deep learning researchers
can concentrate on network architectures and avoid the pitfalls of correcting the data for instrument
changes and other tradecraft problems.

Our team of computer scientists and heliophysicists developed FlareNet during the 2017 NASA
Frontier Development Lab (FDL). We now more fully introduce the physics and the software
developed by our team.

2 A Brief Introduction to Solar Physics and FlareNet

The Sun is a hot ball of plasma primarily consisting ionized hydrogen and helium gases. Dark spots
called sunspots, which are relatively cooler areas, appear on the surface with their number and surface
area varying through 11 year solar cycles [6]. Sunspots are surrounded by regions of concentrated
magnetic field called active regions. Magnetic field activity produced inside the sun follows plasma
motion “flux tubes” to the solar surface. Magnetic flux tubes are stretched and twisted by plasma
motion and reach into the solar atmosphere to form giant loop structures over active regions [14].
These magnetic loops store energy. As magnetic fields rise to the surface and into the solar atmosphere,
energy builds up and occasionally releases in eruptions such as solar flares [12].

SDO monitors solar activity and eruptive events with several space-based instruments (see Figure
1). This high resolution SDO dataset poses unique challenges for deep learning. Each pixel exhibits
very high dynamic ranges with flux that tends to confuse gradient updates and encourage overfitting.
FlareNet addresses these, and other issues to make the problem more amenable to deep learning.

We built FlareNet with components for downloading and transforming SDO data, specifying network
architectures [4], and running experiments. During training, a collection of visualization scripts run
to help physical scientists interpret the relationships being captured by the neural network. Physical
scientists can enhance the understanding process by contributing additional visualization scripts (see
Figure 2).

We also incorporated several useful tools for modifying FlareNet inputs. First, in traditional video
processing techniques it is necessary to incrementally construct a model of the state by sequentially
processing multiple time steps, but this is not necessarily required for solar images. For high-cadence,
scaled and centered data, temporally adjacent images capture the same spatial locations and we can
treat the time steps as additional image channels. FlareNet supports this “temporal compositing”
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Figure 2: Saliency map overlaid over the AIA composites showing the surface+chromosphere+corona
(a), corona (b), and hot corona (c). (d) Observed vs. forecasted flare X-ray flux for training (2010-2015)
and validation (2016) sets.

through the dataset API. Second, the data API supports defining vectors of side channel information
[15] to be appended to the fully connected layers of the neural network. These side channels allow
the convolution layers to avoid learning concepts like the 11 year solar cycle by directly providing the
information. Finally, we define optional pre-processing layers for log transforming the input images
on the GPU. These transformations help address the challenges introduced by high dynamic range
SDO images.

3 Space Weather Task Definitions

The problems of solar flare, irradiance, and CME forecasting can all be formulated as image clas-
sification, image regression, pixel regression (predicting real valued output at individual pixels),
and pixel segmentation (discretized pixel regression) problems within FlareNet. We can also formu-
late the problem of solar particle emissions as classification and regression problems, but particle
measurement does not ascribe solar outputs to individual pixels, thereby preventing pixel regression.

Each of these tasks share the same set of independent variables (the SDO images). We support the
classification and regression tasks by changing between files mapping time steps to the dependent
variable.

Predicting each of these phenomena within FlareNet requires specifying two task metaparameters.
These include the lag until the prediction will be made, and the time frame within which we predict
the phenomena. Setting the time lag to larger values is similar to issuing an extended forecast. Setting
the time frame to larger windows tends to smooth the noise of solar phenomena and increase the
probability of capturing events.

We highlight the problem of solar flare prediction as an illustrative case for the image regression,
classification, and segmentation problems posed by the sun. Solar flares travel from the sun to
earth at the speed of light, which means that we have no warning before their electromagnetic
radiation interacts with our atmosphere. Predicting solar flares is challenging because their triggering
mechanism exhibits similar behavior to snow avalanches or earthquakes [13] – a property known as
“self-criticality” [2, 8]. Free-energy available for this process arises from the organization or the solar
magnetic field, and thus the current methodology for flare forecasting (based on a morphological
classification of magnetic regions [9]) can be understood as an quantification of the storage of free
magnetic energy.

Although the sun produces low magnitude flares with high frequency, only the strongest flares produce
observable adverse technological impact. Flare magnitude is typically tied to the amplitude of their
X-ray radiative output as measured by the GOES X-Ray satellites [1] (see Fig. 3-a). In this work we
focus on flares of class C, M, and X as specified by NOAA’s flare catalog.1

Considering that the SDO era (2010-2017) has only around 8,000 flares of class equal or greater
than C-class, the 12 second cadence of SDO images leads to a class imbalance between flaring and
non-flaring images. Thus, naive training makes the network trend towards always predicting the

1This catalog contains the X-ray flux, start, peak and end times for most flares observed between 1975 and
2017. https://www.ngdc.noaa.gov/stp/solar/solarflares.html
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Figure 3: (a) X-Ray flux measured by the GOES satellite during the SDO era at a cadence of 2
minutes. Flare classification is done based on the maximum X-ray flux emitted during the flaring
event. The strongest category (X-class; red) contains flares ten times stronger than the class below it
(M-class; yellow) and 100 times stronger than the next one (C-class; green). (b) Histogram of flare
occurrence during the SDO era. A clear power law can be seen in the flare distribution showing that
M-class (C-class) flares are roughly 10 (100) times more numerous than X-class flares.

persistence baseline. Because of this, we introduced several oversampling strategies to FlareNet,
including limiting training to pre-flaring images. This strategy steps away from the original task of
forecasting when a flare would happen and how strong it would be, to focus on how strong a flare
could be given the current state of the Sun. Within the avalanche metaphor, this approach is akin to
measuring the amount of snow on the mountain.

4 Discussion

We developed FlareNet during a six week intensive collaboration. Our interdisciplinary team of
computer scientists and physicists lacked sufficient training time to iterate on network architectures,
but our software and problem definition offer important insights into next steps for addressing
space weather problems. FlareNet supports several additional solar modeling problems by changing
the dependent variables within FlareNet to the CME catalog, irradiance measurements, or particle
emissions. It is our hope that by putting in the architectural effort required to develop FlareNet, we
might inspire additional cross-disciplinary collaboration in the physical sciences.
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