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Abstract

We consider the use of Deep Learning methods for modeling complex phenomena like
those occurring in natural physical processes. Using an example application, namely
Sea Surface Temperature Prediction, we show how general background knowledge
gained from the physics could be used as a guideline for designing efficient Deep
Learning models. We demonstrate a formal link between the solution of a class
of differential equations underlying a large family of physical phenomena and the
proposed model. Experiments are then provided.

1 Introduction

The main scientific paradigm for modeling complex physical and natural processes consists in extracting
knowledge from observations, formalizing this knowledge and validating the model experimentally. Con-
servation laws, physical principles or phenomenological behaviors are formalized e.g. using differential
equations, while validation can take the form of forecasting the future states of the process. With the
increased availability of large observation datasets, this physical modeling paradigm is being challenged
by a statistical Machine Learning (ML) paradigm, which directly processes the data to infer prediction,
bypassing the human formalization of process knowledge. However, despite impressive successes in
a variety of domains as demonstrated by the deployment of Deep Learning methods in fields such as
vision, language, speech, etc., the statistical approach is not ready to challenge the physical paradigm
for modeling complex phenomena. We believe that both fields could benefit from closer interactions.
Knowledge and techniques accumulated for modeling physical processes in fields such as scientific
computing or physics are a source of prior information for designing efficient learning systems and
conversely the ML paradigm could open new directions for modeling complex phenomena. This is the
question we tackle: how could general knowledge gained from the physical modeling paradigm help
in the design of efficient ML models? In the absence of a general approach to this issue, we choose to
consider a specific physical modeling problem: forecasting sea surface temperature (SST). SST plays a
significant role in analyzing and assessing the dynamics of weather and other biological systems. Weather
satellites have made huge quantities of very high resolution SST data available [2]. Standard physical
methods for forecasting SST use coupled ocean-atmosphere prediction systems, e.g. based on the Navier
Stokes equations. Note that SST forecasting is used here as an illustrative and a representative example.
We believe that the proposed general procedure could also be used for a more general class of transport
problems.

We propose a Deep Neural Network (NN) model, inspired from general physical motivations which offers
a new approach for solving a family of physical modeling problems. We first motivate our approach by
introducing in section 2] the advection-diffusion equation, which is used in the modeling of a large range
of transport and propagation phenomena in physics. Its solution is used as a guideline for introducing
a Deep Learning architecture for SST prediction which is described in section [3] Experiments and
comparison with a series of baselines are introduced in section 4]
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Our main contributions are: 1) an example showing how to incorporate general physical background
for designing a NN aimed at modeling a relatively complex prediction task. We believe the approach to
be general enough to be used for a family of transport problems obeying general advection-diffusion
principles, 2) links between the mapping function implemented by the NN prediction model and the
solution of a general advection diffusion PDE, 3) a proof of concept that data intensive approaches based
on deep architectures can be competitive with state of the art dedicated numerical methods for modeling
a family of physical processes when incorporating relevant physical prior knowledge.

2 Physical Motivation

Daily temperature acquisitions of the sea surface are captured via satellite imagery. Focusing on a specific
area, forecasting SST can be seen as predicting future SST image frames given past ones. As in [1]],
classical approaches for forecasting SST introduce a numerical model representing prior knowledge
on the conservation laws and physical principles taking place. Many fluid dynamic systems can be
described using two equations: the conservation equation and the momentum equation. The conservation
equation describes the transport of some conserved quantity I (in our case, temperature), often relating
the evolution of I with a motion field w, while the momentum equation describes the evolution of
the motion field w (e.g. the Navier Stokes equation). By optimizing an energy functional enforcing
the model’s generated observations to be consistent with the acquired observations, the motion field is
estimated, which is then used to forecast temperature.

Transport of a conserved quantity [ in fluid occurs through the combination of two principles: advection
and diffusion. During advection, quantity I is transported along w via bulk motion. Diffusion corresponds
to the movement which spreads out I from areas of high concentration to areas of low concentration. The
following conservation equation, known as the advection-diffusion equation describes this transport:

o + (w.V)I = DV?I (1)
ot

V and V2 denote the gradient and the Laplacian operator, respectively, while D corresponds to the
diffusion coefficient. This equation can be used to describe a large family of physical processes (e.g. fluid
dynamics, heat conduction, wind dynamics, etc). Let us now state a result, characterizing the general
solutions of equation [T}

Theorem. E]For any initial condition Iy € L'(R?) with Iy(+00) = 0, there exists a unique global
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solution I(x,t) to the advection-diffusion equation where pfs and k(u,v) = ﬁe*ﬁﬂu*"” is
a radial basis function kernel, or alternatively, a Gaussian probability density with mean x — w and

variance 2Dt in its second argument.

Havt) = [ k(o= w.y) Toly) dy

Equation 2] provides a principled way to calculate I for any time ¢ and position z, provided I, w, and D
are known. This result will be used in the following section to design a Deep Learning model for SST
forecasting. This model will learn to predict a motion field analog to w in equation 2] which will be used
in turn to forecast future images.

3 Model

The Deep Learning model consists of two main components, as illustrated in Figure [l One predicts
the motion field from a sequence of past input images using a convolutional-deconvolutional neural
network (CDNN), and the other warps the last input image /; using the motion field estimate w from
the first component, in order to produce an image forecast I;; ;. The entire system is trained in an
end-to-end fashion, using only the supervision from the target SST images I;, ;. By doing so, we are able
to produce an interpretable latent state which corresponds in our problem to the velocity field advecting
the temperatures.

*Starting from eq. the proof follows from classical techniques from functional analysis
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Figure 1: Motion field w is estimated with a convolutional-deconvolutional (CDNN) neural network
taking as input a series of past images I;_,_1 to I;. A warping scheme then displaces the last input

image I; along the motion estimate w to produce the future image forecast I ++1. The error signal is
calculated using the target future image I;;, and is backpropagated through the warping scheme to

correct the CDNN. To produce multiple time-step forecasts, the predicted image le is fed back in the
CDNN in an autoregressive manner.

Motion field estimation. As indicated in section [2] provided the underlying motion field is known,
one can compute SST forecasts. Let us introduce how the motion field is estimated in our architecture.
We are looking for a vector field w which when applied to the geometric space {2 (the image manifold
in R?) renders I; close to Iy 41, i.e. Iy11(z) =~ Ii(z + w(x)), Vo € Q. If I, were known, we could
estimate w via Optical Flow methods [4], but I;, is precisely what we are looking for. Instead, we
choose to use a CDNN architecture to predict a motion vector for each pixel. Since we usually do not
have a direct supervision on the motion vector field, we will not be able to learn to predict motion by
regressing to the target motion. Using the warping scheme introduced below, we will nonetheless be able

to (weakly) supervise estimate w, based on the discrepancy of the warped version jt+1 of image I; and
the target image ;.

Warping scheme. Discretizing the solution of the advection-diffusion equation in equation [2] and
setting image I; as the initial condition, we obtain a method to calculate the future image, based on the
motion field estimate w. The latter is used in a warping scheme:

e Zk? r — (), y) It(y) 2)

yeQ

where k(x — 0, y) = ﬁe a7 l2=9=vl” i a radial basis function kernel, as in equatlon | param-
eterized by the d1ffus10n coefficient D and the time step value At between ¢t and ¢ + 1. Informally, to
calculate the pixel value for time ¢ 4 1 at position x, we first compute its previous position at time t, i.e.
x — w. We then center a Gaussian in that position in order to obtain a weight value for each pixel in
I; based on its similarity with  — w, and compute a weighted average of the pixel values of I;. This

weighted average will correspond to the new pixel value at = in Iy 1.

This warping mechanism has been inspired by the Spatial Transformer Network (STN) [5], originally
designed to be incorporated as a layer in a convolutional neural network architecture in order to gain
invariance under geometric transformations. Using the notations in [S], when the inverse geometric
transformation Ty of the grid generator step is set to 7p(z) = = — w(x), and the kernels k(. ; @, ) and
k(.;®,) in the sampling step are rbf kernels, we recover our warping scheme. The latter can be seen as
a specific case of the STN, without the localization step. This result theoretically grounds the use of the
STN for Optical Flow in many recent articles [[L1] [10] 8] [3]], as in equation |I|when D — 0, we recover
the brightness constancy constraint equation, ubiquitous in Optical Flow.

Loss function. Equation|l|is under constrained: for each equation we have 2 variables corresponding
to the 2D motion field. Clearly, if w is a solution of equation|[I] for any 7 for whichn L VI, w + nis
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also solution. Additional physical prior knowledge on w can be easily incorporated in our model, by
adding penalty terms in the loss function. In our experiments, we have tested the influence of: divergence

V. iy (2)2, magnitude ||@b()||* and smoothness ||V, (z)||>. We evaluate the influence of these terms
in the experiments section. The complete loss function we used to train the model can then be written as:

L=y

e

[0 (@)” + Agraa [ Ve (@) I* (3)

~ 2
It+1($) — It+1($(})H + )\div(v. 11]15(.’17))2 + )\magn

4 Experiments

We used synthetic SST data of the Atlantic Ocean generated by NEMO (Nucleus for European Modeling
of the Oceanf] [6], a state-of-the-art modeling framework of ocean-related engines. The resulting dataset
consists of daily temperature acquisitions of 481 by 781 pixels, from 2006-12-28 to 2017-04-05 (3734
acquisitions).We extract 64 by 64 pixels sized subregions. We use data from years 2006 to 2015 for
training and validation (94743 training 64 x 64 subregions examples), and years 2016 to 2017 for testing
(1716 subregions). We withhold 20% of the training data for validation, selected uniformly at random at
the beginning of each experiment. (1716 for test). We compare our model with several baselines. Each
model is evaluated with a mean square error metric, forecasting images on a horizon of 6 (we forecast
from I;; to I;4¢ and then average the MSE). The hyperparameters are tuned using the validation set.
Concerning the constraints on the vector field w (equation [3). the regularization coefficients selected
via validation are Agyy = 1, Apagn = —0.03 and Agrig = 0.4. We also compare the results with the
model without any regularization. Our reference model for forecasting is [1]], a state of the art numerical
assimilation model for predicting ocean dynamics, here SST. The other baselines are 1) an autoregressive
convolutional-deconvolutional NN (ACNN) with an architecture similar to our CDNN module, but
trained to predict the future image directly. Each past observation is used as an input channel, and the
output is used as new input for multi-step forecasting. 2) a ConvLSTM (Convolutional Long Short Term
Memory) [9], which uses convolutional transitions in the inner LSTM module, and 3) the model in
[7]], a multi-scale ACNN trained as a Generative Adversial Network (GAN). Quantitatively, our model

Model Average Score (MSE)  Average Time
Numerical model [/1]] 1.99 4.8s
ConvLSTM [9] 5.76 0.018 s
ACNN 15.84 0.54s

GAN Video Generation ([7]]) 473 0.096 s
Proposed model with regularization 142 0.040 s
Proposed model without regularization  2.01 0.040 s

Table 1: Average score and average time on test data. Average score is calculated using the mean square
error metric (MSE), time is in seconds.

performs well (table [T The MSE score is better than any of the baselines. The closest NN baseline
is [7] which regularizes a regression CDNN model with a GAN. The performance is however clearly
below our proposed model and it does not allow to easily incorporate prior constraints inspired from
the physics of the phenomenon. ACNN is a direct predictor of the image sequence, implemented via a
CDNN module identical to the one used in our model. Its performance is limited. ConvLSTM performs
better: as opposed to the ACNN, it seems to be able to capture a dynamic, although not very accurately.
The state of the art numerical model [[1]], performs well but has a slightly lower performance than our
regularized model, although it incorporates more prior constraints. This shows that pure ML models,
when conceived adequately by incorporating general prior physical knowledge and when trained with
enough data, can be competitive with state of the art dedicated models. We also provide in table [I|the
average inference time of the models. All the experiments with NN have been performed og a Titan Xp
GPU. The numerical model [1] has been run on a classical CPU (no GPU code) so that its elapsed time is
not comparable.

’NEMO data are available at  http://marine.copernicus.eu/services-portfolio/
access-to-products/7option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_
PHY_001_024
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5 Conclusion

The data intensive paradigm offers alternative directions to the classical physical approaches for modeling
complex natural processes. Cross fertilization of both paradigms is essential for pushing further the
frontier of complex data modeling. By using as an example application a problem of intermediate
complexity concerning ocean dynamics, we proposed a principled way to design Deep Learning models
taking our inspiration from physics. This approach can be generalized to a class of problems for which the
underlying dynamics follow advection-diffusion principles. It is able to reach performance comparable
to a state of the art numerical model and clearly outperforms alternative NN models used as baselines.
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