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THE MANY-BODY PROBLEM IN QUANTUM MECHANICS

➤ Generic specification of a quantum state 
requires resources exponentially large in 
the number of degrees of freedom N 

➤ Today's best supercomputers can solve 
the wave equation exactly for systems 
with a maximum of ~45 particles.  

➤ Storing the state of a 273 spin system 
requires a computer with more bits 
than there are atoms in the universe 

➤ Yet, technologically relevant problems 
in chemistry, condensed matter physics, 
and quantum computing are much 
larger than 273. 

➤ Quantum computing
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THERE IS STILL HOPE FOR CLASSICAL ALGORITHMS

➤ Nature is sometimes compassionate: 
many-body systems can be typically 
characterized by an amount of information 
smaller than the maximum capacity of the 
corresponding state space. 

➤ Quantum Monte Carlo and other 
numerical methods based on Tensor 
Networks exploit this fact and are able to 
accurately study large quantum system in 
practice with limited amount of resources. 

➤ Machine learning community deals with 
equally high dimensional problems and 
battle the curse of dimensionality 
successfully with impressive results in a 
w ide spec t rum o f s c i en t ific and 
technologically relevant areas of research.  
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FIGURE 57. Linked vertex storage of the configuration in Fig. 55. In the graphical representation to
the left, constant spin states between operators have been replaced by lines (links) connecting the spins
just before and after the operator acts. The links can be stored in a list X(v), where the four elements
v= 4p+ l, l = 0,1,2,3, correspond to the legs (with the numbering convention shown in Fig. 58) of the
vertex at position p in the sequence SL. For two linked legs v and v′, X(v) = v′ and X(v′) = v.
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FIGURE 58. Allowed vertices for the isotropic S= 1/2 Heisenberg model. The numbering l = 0,1,2,3
of the vertex legs corresponds to the position v= 4p+ l, in linked-list storage illustrated in Fig. 57.

will continue to use also the open and solid bars in pictures, to indicate diagonal and
off-diagonal vertices, respectively, for added clarity.
For a given position p in the operator sequence SL, the corresponding list element

s(p) tells us the operator type (diagonal or off-diagonal) and the bond b on which it
acts (as explained in Fig. 55). As will become clear below, along with this information,
we only have to store the connectivity of the vertices, not their spin states. The links
allowing us to jump between connected vertex legs are stored as a list X(v), as explained
in Fig. 57. For clarity of the illustration, the one dimensional list has here been arranged
in four columns, with elements labeled v = 4p+ l, corresponding to each type of leg,
l = 0,1,2,3, with the labeling specified in Fig. 58. We will later describe an efficient
way to construct this linked list, given the operator sequence. For now, it is sufficient to
know that for a given operator at location p in the sequence, the position of its l:th leg
in the linked vertex list is v = 4p+ l. This leg is linked to another vertex leg with list
address v′ = X(v). This kind of structure constitutes a doubly-linked (bi-directional) list,
with X [X(v)] = v, in which we can move both “up” and “down”. From a position v in the
list we can extract the corresponding operator location in SL, p = v/4 (its integer part)
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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QUANTUM AND CLASSICAL MANY-BODY PHYSICS HAS NOT BEEN THE EXCEPTION

➤ ML phases of matter/phase transitions (Carrasquilla, Melko 1605.01735, Wang 1606.00318, Zhang, Kim, 
1611.01518)  

➤ New ML inspired ansatz for quantum many-body systems (Carleo, Troyer 1606.02318, Deng, Li, Das 
Sarma, 1701.04844, Deng,  Li, Das Sarma 1609.09060, Carrasquilla, Melko 1605.01735) 

➤ Accelerated Monte Carlo simulations ( Huang, Wang 1610.02746) 

➤ Quantum state preparation guided by ML (Bukov, Day, Sels, Weinberg, Polkovnikov and Mehta 
1705.00565) 

➤ Renormalization group analyses, RBMs, PCA (Bradde, Bialek 1610.09733, Koch-Janusz, Ringel 
1704.06279,Mehta, Schwab,1410.3831) 

➤ Quantum state tomography based on RBMs (Torlai, Mazzola, Carrasquilla, Troyer, Melko, Carleo, 
1703.05334) 

➤ ML based decoders for topological codes (Torlai, Melko 1610.04238, Varsamopoulos, Criger, Bertels,
1705.00857) 

➤ Supervised Learning with Quantum-Inspired Tensor Networks (Stoudenmire, Schwab 1605.05775, 
Novikov, Trofimov, Oseledets, 1605.03795) 

➤ Quantum Boltzmann machines (Amin, Andriyash, Rolfe, Kulchytskyy, Melko, 1601.02036, Kieferova, 
Wiebe, 1612.05204,) 

➤ Quantum machine learning algorithms to accelerate learning (Biamonte, Wittek, Pancotti, Rebentrost, 
Wiebe, Lloyd, 1611.09347) And many more



IN THIS TALK

➤ I will discuss several applications of ML ideas to problems in 
many-body physics. 

➤ Supervised learning approach to classical and quantum phases  
and phase transitions (Ising models) 

➤ Interpreting wave function as a generative model: ground 
state of Kitaev’s topological toric code using convolutional 
neural networks. 

➤ Data intensive problem in quantum mechanics: quantum 
state tomography with neural networks (RBMs) | i 2N
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TOY PROBLEM: ISING MODEL



PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER
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PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ferromagnetic transition: order parameter 3
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FIG. 1: Machine learning the Ising model. (A) The numerically trained fully connected neural

network learns representations of the low- and high-temperature phases of the Ising model. (B)

The magnetization M (dahsed blue line) as a function of temperature T for the ferromagnetic

Ising model on the square lattice. The training and test sets include 1000 states drawn from the

partition function of the Ising model at 40 di↵erent temperatures. (C) The average of the output

layer neurons over the test sets as a function of temperature. (D) The average accuracy of test

sets as a function of temperature. The vertical orange lines signal the critical temperature of the

Ising model T
c

= 2/ ln
�
1 +

p
2
�
.

system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
c

), one can understand the training of the network through a
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WHAT DO I MEAN BY MACHINE LEARNING PHASES 
OF MATTER?



Pirsa: 16060005 Page 18/49

FM phase
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INSPIRATION: FLUCTUATIONS HANDWRITTEN DIGITS (MNIST)

5
ML community has developed 
powerful supervised learning 
algorithms

J. Carrasquilla and R. G. Melko. Nature Physics 13, 431–434 (2017)



2D Ising model in 
the ordered phase

2D Ising model  
in the disordered phase

COLLECTING THE TRAINING/TESTING DATA: MC SAMPLING ISING MODEL AND LABELS
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FIG. 6. Two-dimensional t-SNE visualization of the training set used in the Ising model for L = 30

colored according to temperature. The orange line represents a hyperplane separating the low- from

high-temperatures states.

cool region (and vice versa), crossing over to a low value as the system is warmed through

the orange hyperplane. This allows the classification of a state in terms of the neuron values.

Appendix C: Details of the convolutional neural network of the Ising lattice gauge

theory

The exact architecture of the convolutional neural network (CNN) [4], schematically

described in Figure 4, is as follows. The input layer is a two-dimensional Ising spin config-

uration with N = 16 ⇥ 16 ⇥ 2 spins, where �
i

= ±1. The first hidden layer convolves 64

2⇥ 2 filters on each of the two sublattices of the model with a unit stride, no padding, with

periodic boundary conditions, followed by rectified linear unit (ReLu). The final hidden

layer is a fully-connected layer with 64 ReLu units, while the output is a softmax layer with

two outputs (correponding to T = 0 and T = 1 states). To prevent overfitting, we apply a

dropout regularization in the fully-connected layer [28]. Our model has been implemented
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RESULTS: SQUARE LATTICE ISING MODEL (TEST SETS)
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FIG. 1: Machine learning the square-lattice ferromagnetic Ising model. (A) The trained neural

network learns representations of the low- and high-temperature Ising states. (B) The average

of the output layer neurons over the test sets vs. temperature. (C) The average accuracy over

a test set vs. temperature. (D) Toy model of a neural network for the Ising model. (E) The

average output layer and accuracy of the toy model are displayed in (E) and (F), respectively.

The orange lines signal the critical temperature of the Ising model in the thermodynamic limit,

Tc/J = 2/ ln
�
1 +

p
2
�
.
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ANALYTICAL UNDERSTANDING
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Investigating the argument of the hidden layer during the training

9

values of the low-temperature output neuron in our convolutional neural net for the Ising

lattice gauge theory can be further trained to represent the ground state of the toric code

Hamiltonian [1, 9]. We thus anticipate adoption to the field of quantum technology [25],

such as quantum error correction protocols and quantum state tomography [26]. The ability

of machine learning algorithms to generalize to situations beyond their original design an-

ticipates future applications such as the detection of phases and phase transitions in models

vexed with the Monte Carlo sign problem [3], as well as in experiments with single-site res-

olution capabilities such as the modern quantum gas microscopes [27, 28]. As in all other

areas of “big data”, we expect the rapid adoption of machine learning techniques as a basic

research tool in condensed matter and statistical physics in the near future.
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Appendix A: Details of the toy model

The analytical model encodes the low- and high-temperature phases of the Ising model

through their magnetization. The hidden layer contains 3 perceptrons (a neuron with a

Heaviside step nonlinearity); the first two perceptrons activate when the input states are

mostly polarized, while the third one activate if the states are polarized up or unpolarized.

Notice that the third neuron can also be choosen to activate if the states are polarized down

or unpolarized. The resulting outcomes are recombined in the output layer and produce the

desired classification of the state. The hidden layer is parametrized through a weight matrix

and bias vector given by

W =
1

N (1 + ✏)

0

BBB@

1 1 · · · 1

�1 �1 · · · �1

1 1 · · · 1

1

CCCA
, and b =

✏

(1 + ✏)

0

BBB@

�1

�1

1

1

CCCA
, (A1)

10

FIG. 5: Hidden layer arguments as a function of the magnetization of the Ising state m(x). (A)

displays the hidden layer arguments for our toy model, while (B) and (C) display the arguments

for a neural net with 3 sigmoid neurons before and after training, respectively.

where 0 < ✏ < 1 is the only free parameter of the model. The arguments of the three hidden

layer neurons, in terms of the weight matrix, bias vector, and a particular Ising configuration

x = [�1�2, ..., �N ]T, are given by

Wx + b =
1

(1 + ✏)

0

BBB@

m(x)� ✏

�m(x)� ✏

m(x) + ✏

1

CCCA
, (A2)

where m(x) = 1
N

NP
i=1

�i is the magnetization of the Ising configuration. In Figure 5(A) we

display the components of the Wx + b vector as a function of the magnetization of the
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where these arbitrary choices ensure that the ordered, low-T output neuron OLow-T = 1

is active when either the spins polarize mostly " or #. On the other hand, when the " k 0

neuron is active but the " is not, then the high-temperature output neuron OHigh-T = 1,

symbolizing a high-temperature state.
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CAN WE DEAL WITH 
DISORDERED AND TOPOLOGICAL 

PHASES NOT DESCRIBED BY 
ORDER PARAMETERS?



PHASES OF MATTER WITHOUT AN ORDER PARAMETER AT T=0

➤ Topological phases of matter. Examples: Fractional quantum 
hall effect, quantum spin liquids, Ising gauge theory. Potential 
applications in topological quantum computing. Interestingly, 
these phases defy the Landau symmetry breaking 
classification.  

➤ Coulomb phases = Highly correlated “spin liquids” described 
by electrodynamics. Examples: Common water ice and spin 
ice materials (Ho2Ti2O7 and Dy2Ti2O7) 
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FIG. 2: Detecting the critical temperature of the triangular Ising model through the crossing of

the values of the output layer vs T . The neural net has been trained on data from the square

lattice model. The orange line signals the critical temperature of the Ising model Tc/J = 4/ ln 3,

while the blue dashed line represents our estimate Tc/J = 3.63581.

with N = 2 ⇥ 16 ⇥ 16 spins, we find that a standard fully-connected neural network with

only 100 hidden units successfully distinguishes the states with a 99% accuracy. The net-

work does so solely based on spin configurations, with no information about the underlying

lattice – a feat di�cult for the human eye, even if supplemented with a clear layout of the

underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[9, 22]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [9, 23] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish

Wegner’s Ising gauge theory:

(Kogut Rev. Mod. Phys. 51, 659 (1979))

T=0

Ground state is a classical disordered 
topologically ordered phase 

high temperature phase

Castelnovo and Chamon Phys. Rev. B 76, 174416 (2007)

The grandmother of all lattice  
models for topological quantum 
computation

F.J. Wegner, J. Math. Phys. 12 (1971) 2259

The ground state is a highly 
degenerate manifold with  
exponentially decaying spin–spin  
correlations.  

T=infinity



For two configurations

?



For two configurations

?

Ground state

Feedforward NN are difficult to apply to this problem and lead to 50% accuracy

high-temperature state



ISING GAUGE THEORY

99% accuracy  
*easy to train*
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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FIG. 4. Illustrating the convolutional neural network. The first hidden layer convolves 64 2 ⇥ 2

filters with the spin configuration on each sublattice, followed by rectified linear units (ReLu). The

outcome is followed by fully-connected layer with 64 units and a softmax output layer. The green

line represents the sliding of the maps across the configuration.

late an extensive fraction of the local energetic constraints of the theory, we conclude that

the discriminative power of the CNN relies on the detection of these satisfied constraints.

Furthermore, test sets with defects that retain most local constraints but disrupt non-local

features, like the extended closed-loop gas picture or the associated topological degeneracy

[7], indicate that local constraints are the only features that the CNN relies on for classifica-

tion of the ground state. In view of these observations, we construct a simplified analytical

toy model of our original CNN designed to explicitly exploit local constraints in the clas-

sification task. Such a model discriminates high-temperature from ground states with an

accuracy of 100%. Details of the behavior of the CNN with various test sets, as well as the

details of the analytical model, are contained in the supplementary material.

We have shown that neural network technology, developed for engineering applications

such as computer vision and natural language processing, can be used to encode phases of

matter and discriminate phase transitions in correlated many-body systems. In particular,

we have argued that neural networks encode information about conventional ordered phases

by learning the order parameter of the phase, without knowledge of the energy or locality

conditions of Hamiltonian. Furthermore, we have shown that neural networks can encode

basic information about the ground states of unconventional disordered models, such as

square ice model and the Ising lattice gauge theory, where they learn local constraints satis-

The picture we draw for what the CNN is using to distinguish the phases is 
that of the detection of satisfied local constraints. In few words, the neural network figures out  the 

energy and uses it to classify states



ANALYTICAL UNDERSTANDING: WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

➤ Based on this observation we derived the weights of a 
streamlined convolutional network analytically designed to 
work well for this problem:  
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CONVOLUTIONAL NEURAL 

NETWORKS
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p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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MESSAGES
➤ With a neural network with a small number of parameters we are able to 

write down analytically the ground state of a system. 

➤ Neural networks seem to enable very good compression quantum many-
body states. (analogous to tensor networks) 

➤ No limitations in the dimensionality of the systems 

➤ More importantly, numerical procedures can be constructed to study other 
systems for where analytical results are elusive. 

➤ Potential applications in materials physics, quantum chemistry, quantum 
state tomography, etc.



NEURAL-NETWORK QUANTUM 
STATE TOMOGRAPHY FOR 

LARGE MANY-BODY SYSTEMS



QUANTUM STATE TOMOGRAPHY
➤ Problem: Can we reconstruct the quantum state of a physical system 

from a limited set of experimentally accessible set of measurements?  

was used to project a square lattice potential
onto the pancake cloud with a periodicity of a =
680 nm, as described in (4). The lattice depth
was ramped exponentially with a time constant
of 81 ms up to a maximum depth of 16Er, where
Er is the recoil energy of the effective lattice
wavelength given by h2/8ma2 (where m is the
mass of 87Rb and h is Planck’s constant). In a
homogeneous system in two dimensions, the
transition to a Mott insulator with one atom per
site occurs at a ratio of interaction energy to tun-
neling rate of U/J = 16.7 (17–19), corresponding
to a lattice depth of 12.2Er. During this ramp,
the initial transverse confinement of 9.5 Hz was
increased such that the cloud size remained ap-
proximately constant. After preparing the many-
body state, we imaged the atoms by increasing
the lattice depth by a factor of several hundred,
and then illuminated the atoms with laser cool-
ing light that served to localize the atoms while
fluorescence photons were collected by high-
resolution optics. As a result of the imaging pro-
cess, the many-body wave function was projected
onto number states on each lattice site. In addi-
tion, light-assisted collisions immediately ejected
atoms in pairs from each lattice site, leaving be-
hind an atom on a site only if its initial occupation
was odd (20). The remaining atoms scattered
several thousand photons during the exposure
time and could be detected with high fidelity. By
preparing the sample repeatedly under the same
conditions, we deduced the probability podd of
having an odd number of atoms on a site before
the measurement.

For a coherent state on a lattice site with
mean atom number l, podd is given by ½[1 –
exp(−2l)] < ½. In a Mott-insulating region in
the zero temperature and zero tunneling limit,
podd = 1 for shells with an odd atom number per
site, and podd = 0 for shells with an even atom
number per site. Figure 1, A to D, shows flu-
orescence images in a region of the cloud as the
final depth of the lattice is increased. The initial
superfluid density was chosen to obtain an in-
sulator with two shells on the Mott side of the
transition; the region shown is in the outer shell
containing one atom per site. For high filling
fractions, the lattice sites in the images were
barely resolved, but the known geometry of the
lattice and imaging system point-spread function
obtained from images at sparser fillings allowed
reliable extraction of site occupations (16).

We used 24 images at each final lattice depth
to determine podd for each site. The transverse
confining potential varied slowly relative to the
lattice spacing, and the system was, to a good
approximation, locally homogeneous. We made
use of this to improve the error in our determi-
nation of podd by averaging over a group of lattice
sites—in this case, 51 sites for regions in the
first shell and 30 sites for regions in the second
shell (Fig. 1E). In the n = 1 shell, we detected an
atom on a site with probability 94.9 T 0.7% at a
lattice depth of 16Er. We measured the lifetime
of the gas in the imaging lattice and determined

that 1.75 T 0.02% of the occupied sites were
detected as unoccupied, as a result of atoms lost
during the imaging exposure time (1 s) because

of background gas collisions. The average oc-
cupation numbers and error bars shown in Fig.
1E include corrections for this effect.

Fig. 1. Single-site imaging of
atom number fluctuations across
the superfluid–Mott insulator
transition. (A to D) Images with-
in each column are taken at
the same final 2D lattice depth
of 6Er (A), 10Er (B), 12Er (C),
and 16Er (D). Top row: In situ
fluorescence images from a re-
gion of 10 × 8 lattice sites
within the n = 1 Mott shell that
forms in a deep lattice. In the
superfluid regime [(A) and (B)],
sites can be occupied with odd
or even atom numbers, which
appear as full or empty sites,
respectively, in the images. In
the Mott insulator, occupancies
other than 1 are highly sup-
pressed (D). Middle row: results
of the atom detection algorithm
(16) for images in the top row.
Solid and open circles indicate
the presence and absence, re-
spectively, of an atom on a site.
Bottom row: Time-of-flight fluo-
rescence images after 8-ms ex-
pansion of the cloud in the 2D
plane as a result of nonadiabat-
ically turning off the lattice and the transverse confinement (averaged over five shots and binned over 5 × 5
lattice sites). (E) Measured value of podd versus the interaction-to-tunneling ratio U/J. Data sets, with 1s error
bars, are shown for regions that form part of the n = 1 (squares) and n = 2 (circles) Mott shells in a deep
lattice. The lines are based on finite-temperature Monte Carlo simulations in a homogeneous system at
constant temperature-to-interaction ratio (T/U) of 0.20 (dotted red line), 0.15 (solid black line), and 0.05
(dashed blue line). The axis on the right is the corresponding odd-even variance given by podd(1 − podd).
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Fig. 2. Single-site imaging of the
shell structure in a Mott insulator.
(A to D) The images show podd on
each site determined by averaging
20 analyzed fluorescence images.
The lattice depth is 22Er and the
transverse confinement is 45 Hz. As
the atom number is increased, the
number of shells in the insulator
increases from one to four. The val-
ue of podd for odd-numbered shells
is close to 1; for even-numbered
shells, it is close to 0. The atom num-
bers, determined by in situ imaging
of clouds expanded in the plane, are
120 T 10 (A), 460 T 20 (B), 870 T
40 (C), and 1350 T 70 (D). (E and F)
Long-wavelength disorder can be cor-
rected by projecting an appropriate
compensation light pattern onto the
atoms, resulting in nearly circular
shells. (E) podd (average of 20 ana-
lyzed images); (F) a single-shot raw
image (arbitrary units).
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Cold atomic gases

W. Bakr et al, Science (2010)

Trapped ions Quantum devices

ETH Trapped Ion Quantum 
Information Group

QST is used as a diagnostic tool in experiments and implementation of technologically relevant quantum algorithms. 
Measurements required for QST are routinely available in these devices and other systems 



THE PROBLEM AND THE REQUIREMENTS OF QST

➤ Problem: Can we reconstruct the quantum state of a physical system 
from a limited set of experimentally accessible set of measurements?  

Requirements for QST of large systems (for small systems QST 
traditionally requires exponential resources) 

-Efficient representation of the quantum state: Neural Networks, MPS. 

-Set of projective measurements in different bases  

-A learning procedure that makes use of the data to learn the state. It 
is inherently a big-data problem:   Unsupervised learning (maximum 
likelihood estimation MLE)

Cramer et al, Nat. Comm. (2010)

MPS QST
RBM QST

Torlai, Mazzola, Carrasquilla, Troyer,  Melko and Carleo 1703:05334

| �,µ(�
[b])|2 ' Pb(�

[b])



BENEFITS OF RBM QST

➤ Suitable for systems in any dimension 

➤ Compact representation of the states 

➤ Availability of a wide set of tools for the evaluation of the 
results (e.g. log-likelihood on test set, overfitting etc) 

➤ RMBs can encode states with volume-law entanglement*  

➤ Assumption: the state is pure

Cramer et al, Nat. Comm. (2010)

MPS QST Let’s introduce RBM QST

Torlai, Mazzola, Carrasquilla, Troyer,  Melko and Carleo 1703:05334

*Dong-Ling Deng  et al  Phys. Rev. X 7, 021021 (2017)



RESTRICTED BOLTZMANN MACHINE WAVE FUNCTION
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RBM wavefunction:

Widespread use of RBMs to solve many-body physics: 

Variational ansatz for quantum wave-functions (Carleo & Troyer, Science 2017) 

Exact representation of topological states (Deng, Li & Das Sarma, arXiv 2016) 

Accelerate Monte Carlo simulations (Huang & Wang, PRB 2017) 

Topological quantum error correction (GT & Melko, PRL) 

and more . . . 

But other choices for the neural network are also possible (CNN, MLP etc)

Torlai, Mazzola, Carrasquilla, Troyer,  Melko and Carleo 1703:05334



TRAINING THE RBM
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ing this stage, the network parameters (�, µ) are op-98

timized to maximize the dataset likelihood, in a way99

that | 
�,µ

(x

[b]
)|2 ' | (x

[b]
)|2 (see Suppl. Inf.). Once100

trained,  
�,µ

(x) approximates both the wave-function’s101

amplitudes and phases, thus reconstructing the target102

state. The accuracy of the reconstruction can be sys-103

tematically improved by increasing the number of hidden104

neurons M in the RBM for fixed N , or equivalently the105

density of hidden units ↵ = M/N .14 One key feature of106

our QST approach, is that it only needs raw data, i.e.107

many experimental snapshots coming from single mea-108

surements, rather than estimates of expectation values of109

operators.1,16,17,25–27 This setup implies that we circum-110

vent the need to achieve low levels of intrinsic Gaussian111

noise in the evaluations of mean values of operators.112

To demonstrate the power of this approach, we start by113

considering QST of the W state, a paradigmatic N -qubit114

multipartite entangled wave-function defined as115

| 
W

i =

1p
N

�|100 . . .i + ... + | . . . 001i�. (2)

To mimic experiments, we generate several datasets with116

an increasing number of synthetic density measurements117

obtained by sampling from the W state in the �

z basis.118

These measurements are used to train an RBM model119

featuring only the set of parameters �, since the tar-120

get | 
W

i is real and positive in this basis. After the121

training, we sample from | 
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) is applied to each qubit. QST is now144

carried out using the full RBM wave-function and train-145

ing on 2(N�1) additional bases (see Suppl. Mat.). In the146

lower section of Fig. 1 we plot the comparison between147

the exact phases (c) and the phases learned by the RBM148

(d) for N = 20 qubits, showing very good agreement149

(O
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= 0.997).150

We now turn to the case of more complex systems151

and demonstrate QST for genuine many-body problems.152
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Figure 1. Tomography of the W state. a) Overlap be-
tween the W state and the wave-function generated by the
trained RBM with ↵ = 1 as a function of the number of sam-
ples in the training dataset. b) Histogram of the occurrence
of each of the superposed states in the W state for N = 20
qubits. We plot three histograms obtained by sampling a
RBM trained on a dataset containing 50 (red), 1000 (blue)
and 20000 (green) independent samples. c-d) Phases ✓(�z

k)
for each of the N = 20 states (different colors) in the phase
augmented W state. We show the comparison between the ex-
act phases (c) and the phases learned by a RBM (d), trained
using 6400 samples per basis (magnitudes of the phases are
plotted along the radial direction). RBM tomography allows
here to systematically converge to the target W state for both
cases with real and complex wave-function coefficients, upon
increasing the number of experimental samples.
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Figure 1. Tomography of the W state. a) Overlap be-
tween the W state and the wave-function generated by the
trained RBM with ↵ = 1 as a function of the number of sam-
ples in the training dataset. b) Histogram of the occurrence
of each of the superposed states in the W state for N = 20
qubits. We plot three histograms obtained by sampling a
RBM trained on a dataset containing 50 (red), 1000 (blue)
and 20000 (green) independent samples. c-d) Phases ✓(�z
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for each of the N = 20 states (different colors) in the phase
augmented W state. We show the comparison between the ex-
act phases (c) and the phases learned by a RBM (d), trained
using 6400 samples per basis (magnitudes of the phases are
plotted along the radial direction). RBM tomography allows
here to systematically converge to the target W state for both
cases with real and complex wave-function coefficients, upon
increasing the number of experimental samples.
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These data have been generated assuming ideal measurements on the
reconstructed density matrix and using the measurement settings of
the real experiment. For each of the artificial measurement sets a new
density matrix was reconstructed via the maximum-likelihood
method, and the spread of the expectation values of the observables
was extracted.
For an investigation of the entanglement properties, we associate

each particle k of a state r with a (possibly spatially separated) party
Ak. We shall be interested in different aspects of entanglement
between parties Ak, that is, the non-locality of the state r. A detailed
entanglement analysis is achieved by investigating (1) the presence of
genuinemultipartite entanglement, (2) the distillability ofmultipartite
entanglement and (3) entanglement in reduced states of two qubits.
First, we consider whether the production of a single copy of the

state requires non-local interactions of all parties. This leads to the
notion of multipartite entanglement and biseparability. A pure
multipartite state jwl is called biseparable if two groups G1 and G2

within the parties Ak can be found such that jwl is a product state
with respect to the partition

jwl¼ jxlG1
^jhlG2

ð2Þ
otherwise it is multipartite entangled. A mixed state r is called
biseparable if it can be produced by mixing pure biseparable
states jwbs

i l—which may be biseparable with respect to different
bipartitions—with some probabilities pi, that is, the state can be
written as r¼P

ipijwbs
i lkw

bs
i j: If this is not the case, r is multipartite

entangled. The generation of such a genuine multipartite entangled
state requires interaction between all parties. In particular, a mixture
of bipartite entangled states is not considered to be multipartite
entangled. In order to show the presence of multipartite entangle-
ment, we use the method of entanglement witnesses21–23.
An entanglement witness for multipartite entanglement is an obser-
vable with a positive expectation value on all biseparable states. Thus
a negative expectation value proves the presence of multipartite
entanglement. A typical witness for the states jWNl would be23:

WN ¼N2 1

N
l2 jWN l kWN j ð3Þ

This witness detects a state as entangled if the fidelity of the W state
exceeds (N 2 1)/N. However, more sophisticated witnesses can be
constructed, if there is more information available on the state under

investigation than only the fidelity. To do so, we add other operators
to the witness in equation (3) (see Methods) which take into account
that certain biseparable states can be excluded on the grounds of the
measured density matrix. Table 2 lists the expectation values for
these advanced witnesses. The negative expectation values prove
that in our experiment four-, five-, six-, seven- and eight-qubit
entanglement has been produced.
Second, we consider the question of whether one can use many

copies of the state r to distil one puremultipartite entangled state jwl
by local means; that is, whether entanglement contained in r is
qualitatively equivalent to multiparty pure state entanglement. For
this aim one determines whether there exists a number M such that
the transformation

M copies

r^r^· · ·^r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
$$$$$$$$!LOCC jwl ð4Þ

is possible. Here, jwl is a multipartite entangled pure state (for

Table 1 | Creation of a jWNl-state (N 5 {6,7,8})

Initialization Entanglement

j0;SSS· · ·Sl (1)
RþN ð2arccosð1=

ffiffiffi
N

p
Þ$$$$$$$$$$$$!

(i1)
RCNðpÞRCN21ðpÞ· · ·RC1 ðpÞ$$$$$$$$$$$$$$! 1ffiffiffi

N
p j0;SDD· · ·Dlþ

ffiffiffiffiffiffiffi
N21

p
ffiffiffi
N

p j1;DDD· · ·Dl

j0;DDD· · ·Dl (2)
RþN21ð2arcsinð1=

ffiffiffiffiffiffiffi
N21

p
Þ$$$$$$$$$$$$$$$$!

Check state via fluorescence 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ
ffiffiffiffiffiffiffi
N22

p
ffiffiffi
N

p j1;DDD· · ·Dl

(i2)
Rþ1 ðpÞ$$! ..

. ..
.

j0;DDD· · ·Dl 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi
N

p j1;DDD· · ·Dl

Check state via fluorescence (N)
Rþ1 ð2arcsinð1=

ffiffi
1

p
Þ$$$$$$$$$$$$!

(i3)
RCNðpÞ$$! 1ffiffiffi

N
p j0;SDD· · ·Dlþ 1ffiffiffi

N
p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi

N
p j0;DDD· · ·Sl

j0;SDD· · ·Dl

(i1)–(i3) are initialization steps; (1)–(N) are entanglement steps. First we initialize the ions via sideband cooling and optical pumping in the j0, SS· · ·Sl state, where we use the notation
jn;xNxN21 · · ·x1l: n describes the vibrational quantum number of the ion motion and x i their electronic state. We then prepare the j0;DDD· · ·Dl state with N p–pulses on the carrier transition
applied to ions 1 to N, denoted by RCn ðv¼ pÞ (the notation is detailed in ref. 29; we do not specify the phase of the pulses because their particular value is irrelevant in this context). Then this
state is checked for vanishing fluorescence with a photomultiplier tube. The same is done after trying to drive a p pulse on the blue sideband on ion 1 to ensure that the ion crystal is in the
motional ground state. After this initialization, we transform the state to j0;SDD· · ·Dl with a carrier p pulse and start the entanglement procedure in step (1). This is carried out by moving most
of the population to j1;DDD· · ·Dl with a blue sideband pulse of length vn ¼ arccosð1= ffiffiffi

n
p Þ leaving the desired part back in j0;SDD· · ·Dl: Finally, we use N 2 1 blue sideband pulses ðRþn ðvnÞÞ of

pulse length vn ¼ arcsinð1= ffiffiffi
n

p Þ such that at each step we split off a certain fraction of the wave packet. Note that for an ion string in the ground state, blue-sideband pulses acting on an ion in
the D state have no effect. For N ¼ {4,5} we do not check the fluorescence, combine steps (i1) and (i3) and omit step (i2).
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Figure 1 | Absolute values, jrj, of the reconstructed density matrix of a
jW8l state as obtained from quantum state tomography.
DDDDDDDD…SSSSSSSS label the entries of the density matrix r. Ideally,
the blue coloured entries all have the same height of 0.125; the yellow
coloured bars indicate noise. Numerical values of the density matrices for
4 # N # 8 can be found in Supplementary Information. In the upper right
corner a string of eight trapped ions is shown.
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Amounts to learning a one-hot encoding vectors of N classes. 
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(x) approximates both the wave-function’s
amplitudes and phases, thus reconstructing the target
state. The accuracy of the reconstruction can be sys-
tematically improved by increasing the number of hidden
neurons M in the RBM for fixed N , or equivalently the
density of hidden units ↵ = M/N .9 One key feature of
our QST approach, is that it only needs raw data, i.e.
many experimental snapshots coming from single mea-
surements, rather than estimates of expectation values of
operators.10,12,13,21–24 This setup implies that we circum-
vent the need to achieve low levels of intrinsic Gaussian
noise in the evaluations of mean values of operators.

To demonstrate the power of this approach, we start by
considering QST of the W state, a paradigmatic N -qubit
multipartite entangled wave-function defined as
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To mimic experiments, we generate several datasets with
an increasing number of synthetic density measurements
obtained by sampling from the W state in the �

z basis.
These measurements are used to train an RBM model
featuring only the set of parameters �, since the tar-
get | 
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i is real and positive in this basis. After the
training, we sample from | 
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)|2 and build the his-
togram of the frequency of the components appearing in
| 

W

i. In Fig. 1(a) we show three histograms obtained
with a different number of samples in the training dataset
for N = 20, and for a fixed density of hidden variables
↵ = 1. From the histograms, we see that upon increas-
ing the number of samples each of the N components�
|100 . . . i, |010 . . . i . . . ) contribute equally to the wave-

function, as expected from the exact W state. To better
quantify the quality of our reconstruction we then com-
pute the overlap O

W

= |h 
W

| 
�

i| of the wave-function
generated by the RBM with the original W state (see
Suppl. Mat.). In Fig. 1(b) O

W

is shown as a function of
the number of samples in the training datasets for three
different values of N . For a system size substantially
larger than what is currently available in experiments,25
an overlap O

W

⇠ 1 can be achieved with a limited num-
ber of samples. As a comparison, for N = 8, full QST re-
quires almost 10

6 measurements,21 whereas our approach
achieves comparable accuracy with only about 100 mea-
surements. We further consider a phase-augmented W
state, where a local phase shift exp(i✓(�z

k

)/2) with ran-
dom phase ✓(�z

k

) is applied to each qubit. QST is now
carried out using the full RBM wave-function and train-
ing on 2(N�1) additional bases (see Suppl. Mat.). In the
lower section of Fig. 1 we plot the comparison between
the exact phases (c) and the phases learned by the RBM
(d) for N = 20 qubits, showing very good agreement
(O

W

= 0.997).
We now turn to the case of more complex systems

and demonstrate QST for genuine many-body problems.
To mimic experimental outcomes, we generate artificial
datasets sampling different quantum states of interacting
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Figure 1. Tomography of the W state. a) Overlap be-
tween the W state and the wave-function generated by the
trained RBM with ↵ = 1 as a function of the number of sam-
ples in the training dataset. b) Histogram of the occurrence
of each of the superposed states in the W state for N = 20
qubits. We plot three histograms obtained by sampling a
RBM trained on a dataset containing 50 (red), 1000 (blue)
and 20000 (green) independent samples. c-d) Phases ✓(�z

k)
for each of the N = 20 states (different colors) in the phase
augmented W state. We show the comparison between the ex-
act phases (c) and the phases learned by a RBM (d), trained
using 6400 samples per basis (magnitudes of the phases are
plotted along the radial direction). RBM tomography allows
here to systematically converge to the target W state for both
cases with real and complex wave-function coefficients, upon
increasing the number of experimental samples.
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where the �
i

are Pauli spin operators.
We first discuss QST for ground state wave-functions

of Hamiltonians with nearest neighbors couplings, con-
sidering both a 1-dimensional (1d) chain with N sites
and a 2-dimensional (2d) square lattice with linear ex-
tent L (for a total of N = L2 spins). Synthetic measure-
ments in this case are obtained with standard quantum

N = 20
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These data have been generated assuming ideal measurements on the
reconstructed density matrix and using the measurement settings of
the real experiment. For each of the artificial measurement sets a new
density matrix was reconstructed via the maximum-likelihood
method, and the spread of the expectation values of the observables
was extracted.
For an investigation of the entanglement properties, we associate

each particle k of a state r with a (possibly spatially separated) party
Ak. We shall be interested in different aspects of entanglement
between parties Ak, that is, the non-locality of the state r. A detailed
entanglement analysis is achieved by investigating (1) the presence of
genuinemultipartite entanglement, (2) the distillability ofmultipartite
entanglement and (3) entanglement in reduced states of two qubits.
First, we consider whether the production of a single copy of the

state requires non-local interactions of all parties. This leads to the
notion of multipartite entanglement and biseparability. A pure
multipartite state jwl is called biseparable if two groups G1 and G2

within the parties Ak can be found such that jwl is a product state
with respect to the partition

jwl¼ jxlG1
^jhlG2

ð2Þ
otherwise it is multipartite entangled. A mixed state r is called
biseparable if it can be produced by mixing pure biseparable
states jwbs

i l—which may be biseparable with respect to different
bipartitions—with some probabilities pi, that is, the state can be
written as r¼P

ipijwbs
i lkw

bs
i j: If this is not the case, r is multipartite

entangled. The generation of such a genuine multipartite entangled
state requires interaction between all parties. In particular, a mixture
of bipartite entangled states is not considered to be multipartite
entangled. In order to show the presence of multipartite entangle-
ment, we use the method of entanglement witnesses21–23.
An entanglement witness for multipartite entanglement is an obser-
vable with a positive expectation value on all biseparable states. Thus
a negative expectation value proves the presence of multipartite
entanglement. A typical witness for the states jWNl would be23:

WN ¼N2 1

N
l2 jWN l kWN j ð3Þ

This witness detects a state as entangled if the fidelity of the W state
exceeds (N 2 1)/N. However, more sophisticated witnesses can be
constructed, if there is more information available on the state under

investigation than only the fidelity. To do so, we add other operators
to the witness in equation (3) (see Methods) which take into account
that certain biseparable states can be excluded on the grounds of the
measured density matrix. Table 2 lists the expectation values for
these advanced witnesses. The negative expectation values prove
that in our experiment four-, five-, six-, seven- and eight-qubit
entanglement has been produced.
Second, we consider the question of whether one can use many

copies of the state r to distil one puremultipartite entangled state jwl
by local means; that is, whether entanglement contained in r is
qualitatively equivalent to multiparty pure state entanglement. For
this aim one determines whether there exists a number M such that
the transformation

M copies

r^r^· · ·^r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
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is possible. Here, jwl is a multipartite entangled pure state (for

Table 1 | Creation of a jWNl-state (N 5 {6,7,8})
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N22

p
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. ..
.
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N
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1

p
Þ$$$$$$$$$$$$!
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N
p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi

N
p j0;DDD· · ·Sl
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(i1)–(i3) are initialization steps; (1)–(N) are entanglement steps. First we initialize the ions via sideband cooling and optical pumping in the j0, SS· · ·Sl state, where we use the notation
jn;xNxN21 · · ·x1l: n describes the vibrational quantum number of the ion motion and x i their electronic state. We then prepare the j0;DDD· · ·Dl state with N p–pulses on the carrier transition
applied to ions 1 to N, denoted by RCn ðv¼ pÞ (the notation is detailed in ref. 29; we do not specify the phase of the pulses because their particular value is irrelevant in this context). Then this
state is checked for vanishing fluorescence with a photomultiplier tube. The same is done after trying to drive a p pulse on the blue sideband on ion 1 to ensure that the ion crystal is in the
motional ground state. After this initialization, we transform the state to j0;SDD· · ·Dl with a carrier p pulse and start the entanglement procedure in step (1). This is carried out by moving most
of the population to j1;DDD· · ·Dl with a blue sideband pulse of length vn ¼ arccosð1= ffiffiffi

n
p Þ leaving the desired part back in j0;SDD· · ·Dl: Finally, we use N 2 1 blue sideband pulses ðRþn ðvnÞÞ of

pulse length vn ¼ arcsinð1= ffiffiffi
n

p Þ such that at each step we split off a certain fraction of the wave packet. Note that for an ion string in the ground state, blue-sideband pulses acting on an ion in
the D state have no effect. For N ¼ {4,5} we do not check the fluorescence, combine steps (i1) and (i3) and omit step (i2).
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Figure 1 | Absolute values, jrj, of the reconstructed density matrix of a
jW8l state as obtained from quantum state tomography.
DDDDDDDD…SSSSSSSS label the entries of the density matrix r. Ideally,
the blue coloured entries all have the same height of 0.125; the yellow
coloured bars indicate noise. Numerical values of the density matrices for
4 # N # 8 can be found in Supplementary Information. In the upper right
corner a string of eight trapped ions is shown.
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Figure 2. Tomography for many-body Hamiltonians. In panels (a-d) we show QST for ground states, comparing the
reconstructed observables to those obtained with quantum Monte Carlo simulations. In panels (e-g) we show QST for unitary
evolution of a 1d chain following a quantum quench with long-range Ising Hamiltonian with � = 3/4. a) Diagonal and off-
diagonal magnetizations as a function of the transverse field h for the ferromagnetic 2d-TFIM on a square lattice with linear
size L = 12 (N = 144). b) Two-point correlation function (diagonal and off-diagonal) between neighboring spins along the
diagonal of the square lattice (linear size L = 12) for the 2d-XXZ model. Each data point is obtained with a RBM from a
network trained with ↵ = 1/4 on separate datasets. RBM-QST allows here to accurately reconstruct, for each model, both
diagonal and off-diagonal observables of the target state. In the lower panels we show the reconstruction of the diagonal spin
correlation function h�z

i �
z
j i for the 1d-TFIM with N = 100 sites at the critical point h = 1. c) Direct calculation on spin

configurations from a test-set much larger than the training dataset, d) Reconstruction of the correlations by sampling the
trained RBM with ↵ = 1/2. e) Overlap between the system wave-function  (�; t) and the RBM wave-function  �,µ(�) for
t = 0.5, as a function of the number of samples NS per basis. In the inset we show the overlap as a function of time for different
values of NS . In the lower panels we show the reconstruction of the 2N phases (re-arranged as a 2d array) for N = 12 and
t = 0.5. f) Exact phases ✓(�k) for each component  (�k; t). g) Phases �µ(�k) learned by the RBM with ↵ = 1.

Monte Carlo (QMC) methods (see Supp. Inf.), stochas-
tically sampling the exact ground-state of Hamiltonians
in Eqs. (3,4) for different values of the coupling parame-
ters h and �, covering the critical part of the phase dia-
gram. The many-body ground-state wave-function is real
and positive, thus our reconstruction scheme does not re-
quire measurements in any additional basis other than
�

z. Once the training is complete, we can test the rep-
resentational power of the neural networks by computing
various observables using the RBM and comparing with
the values obtained through QMC simulations.14. In par-
ticular we consider few-body magnetic observables, such
as magnetization and spin correlations.

For the TFIM we look both at the longitudinal �z, and
transverse �x magnetizations. As shown in Fig. 2 (a)
for d = 2, the RBMs can reproduce the average values
with high accuracy, both for diagonal and off-diagonal
observables. For the XXZ model, we show in Fig. 2 (b)
for d = 2 the expectation values of the diagonal �z
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spin correlations, with a and b
being neighbors along the lattice diagonal. Finally, we

consider the full spin-spin �z
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correlation function for
the 1d-TFIM, which involves non-local correlations. We
show the reconstruction of the correlation function using
the RBM (Fig. 2 (d)) closely matching the exact result
obtained by direct computation from the spin states on
a much larger independent set of QMC measurements
(Fig. 2 (c)), with deviations compatible with statistical
uncertainty due to the finiteness of the training set.

In the context of many-body Hamiltonians, we now go
beyond ground states and realize QST for states origi-
nating from dynamics under unitary evolution. In par-
ticular, we consider a 1d chain of Ising spins initially
prepared in the state  

0

= | !, !, . . . , !i (fully aligned
in the �

x basis), subject to unitary dynamics enforced
by the Hamiltonian in Eq. 3 with long-range interactions
J

ij

/ 1/|i � j|� and magnetic field set to zero (h = 0).
This kind of “quench” dynamics is realizable in exper-
iments with ultra-cold ions26. For a given time t, we
perform QST on the state | (t)i = exp(�iHt)| 

0

i by
training the RBM on spin density measurements per-
formed in 2N + 1 different basis (see Supp. Inf.). In
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Figure 2. Tomography for many-body Hamiltonians. In panels (a-d) we show QST for ground states, comparing the
reconstructed observables to those obtained with quantum Monte Carlo simulations. In panels (e-g) we show QST for unitary
evolution of a 1d chain following a quantum quench with long-range Ising Hamiltonian with � = 3/4. a) Diagonal and off-
diagonal magnetizations as a function of the transverse field h for the ferromagnetic 2d-TFIM on a square lattice with linear
size L = 12 (N = 144). b) Two-point correlation function (diagonal and off-diagonal) between neighboring spins along the
diagonal of the square lattice (linear size L = 12) for the 2d-XXZ model. Each data point is obtained with a RBM from a
network trained with ↵ = 1/4 on separate datasets. RBM-QST allows here to accurately reconstruct, for each model, both
diagonal and off-diagonal observables of the target state. In the lower panels we show the reconstruction of the diagonal spin
correlation function h�z

i �
z
j i for the 1d-TFIM with N = 100 sites at the critical point h = 1. c) Direct calculation on spin

configurations from a test-set much larger than the training dataset, d) Reconstruction of the correlations by sampling the
trained RBM with ↵ = 1/2. e) Overlap between the system wave-function  (�; t) and the RBM wave-function  �,µ(�) for
t = 0.5, as a function of the number of samples NS per basis. In the inset we show the overlap as a function of time for different
values of NS . In the lower panels we show the reconstruction of the 2N phases (re-arranged as a 2d array) for N = 12 and
t = 0.5. f) Exact phases ✓(�k) for each component  (�k; t). g) Phases �µ(�k) learned by the RBM with ↵ = 1.

Monte Carlo (QMC) methods (see Supp. Inf.), stochas-
tically sampling the exact ground-state of Hamiltonians
in Eqs. (3,4) for different values of the coupling parame-
ters h and �, covering the critical part of the phase dia-
gram. The many-body ground-state wave-function is real
and positive, thus our reconstruction scheme does not re-
quire measurements in any additional basis other than
�

z. Once the training is complete, we can test the rep-
resentational power of the neural networks by computing
various observables using the RBM and comparing with
the values obtained through QMC simulations.14. In par-
ticular we consider few-body magnetic observables, such
as magnetization and spin correlations.

For the TFIM we look both at the longitudinal �z, and
transverse �x magnetizations. As shown in Fig. 2 (a)
for d = 2, the RBMs can reproduce the average values
with high accuracy, both for diagonal and off-diagonal
observables. For the XXZ model, we show in Fig. 2 (b)
for d = 2 the expectation values of the diagonal �z
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spin correlations, with a and b
being neighbors along the lattice diagonal. Finally, we

consider the full spin-spin �z
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correlation function for
the 1d-TFIM, which involves non-local correlations. We
show the reconstruction of the correlation function using
the RBM (Fig. 2 (d)) closely matching the exact result
obtained by direct computation from the spin states on
a much larger independent set of QMC measurements
(Fig. 2 (c)), with deviations compatible with statistical
uncertainty due to the finiteness of the training set.

In the context of many-body Hamiltonians, we now go
beyond ground states and realize QST for states origi-
nating from dynamics under unitary evolution. In par-
ticular, we consider a 1d chain of Ising spins initially
prepared in the state  

0

= | !, !, . . . , !i (fully aligned
in the �

x basis), subject to unitary dynamics enforced
by the Hamiltonian in Eq. 3 with long-range interactions
J

ij

/ 1/|i � j|� and magnetic field set to zero (h = 0).
This kind of “quench” dynamics is realizable in exper-
iments with ultra-cold ions26. For a given time t, we
perform QST on the state | (t)i = exp(�iHt)| 

0

i by
training the RBM on spin density measurements per-
formed in 2N + 1 different basis (see Supp. Inf.). In
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Figure 3. Reconstruction of the entanglement entropy.
Second Renyi entropy as a function of the subsystem size `
for N = 20 spins. We compare results obtained using the
the RBM wave-functions (markers) with exact diagonaliza-
tion (dashed lines) for the 1d-TFIM at different values of the
transverse magnetic field h and the 1d-XXZ model with crit-
ical anisotropy � = 1.

Fig. 2 (e) we show the overlap between the RBM wave-
function  

�,µ

(�) and the time-evolved state  (�; t) for
different system sizes N , as a function of the number N

S

of samples per basis (inset shows overlap scaling with
time). In the lower plot we show for N = 12 the ex-
act (f) and the reconstructed phases (g). The quality of
the RBM-QST is once more remarkable, with a limited
number of measurements needed.

To further assess the capabilities of our approach, we
finally turn to the entanglement entropy, a highly non-
local quantity particularly challenging for direct exper-
imental observations.11 It provides important informa-
tion on the universal behavior of interacting many-body
systems and it is of central interest in condensed mat-
ter physics and quantum information theory. Following
the method proposed here, we can obtain an estimate of
this quantity given only simple measurements of the den-
sity, which are more accessible with current experimen-
tal advances.27 Given a bipartition of the physical sys-
tem, we consider in particular the second Renyi entropy
defined as S

2

(⇢
A

) = � log(Tr(⇢2

A

)), with the subsystem
⇢

A

of varying size. We estimate S
2

by employing an
improved ratio trick sampling28 using the wave-function

generated by the RBM. In Fig. 3 we show the entan-
glement entropy for the 1d-TFIM with three values of
the transverse field, and for the critical (� = 1) 1d-XXZ
model. In both instances we took a chain with N = 20

spins and plot the entanglement entropy as a function
of the subsystem size ` 2 [1, N/2]. The values obtained
with the RBM (markers) are compared with results from
exact diagonalization (dashed lines), with an overall good
agreement.

To conclude, we have demonstrated that ML tools
can be efficiently used to reconstruct complex many-
body quantum states from a limited number of exper-
imental measurements. Our scheme is general enough
to be efficiently applied to a variety of quantum de-
vices for which current approaches demand exponentially
large resources. These include QST of highly-entangled
quantum circuits, adiabatic quantum simulators,29 ex-
periments with ultra-cold atoms and ions traps in higher
dimensions.30–32 Our approach can be used to directly
validate quantum computers and simulators, as well as
to indirectly reconstruct quantities which are experimen-
tally challenging for a direct observation. For exam-
ple, we anticipate that the current generation of quan-
tum microscopes could substantially benefit from neural-
quantum states QST. In particular, we predict that
the use of our approach for bosonic ultra-cold atoms
experiments would allow for the determination of the
entanglement entropy on systems substantially larger
than those currently accessible with quantum interfer-
ence techniques.11
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Many-body Hamiltonians: entanglement

Renyi entropies:

Hard to get experimentally. Our approach suggests an experimentally viable way to do it. 
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It is instructive to investigate the scaling of Rényi entropy and mutual 
information with subsystem size7,44, since in larger systems they can 
characterize quantum phases, for example by measuring the central 
charge of the underlying quantum field theory5. Figure 5b shows these 
quantities versus the subsystem size for various partitioning schemes 
with a single boundary. For the atomic Mott insulator the Rényi entropy 
increases linearly with the subsystem size and the mutual information 
is zero, consistent with both a product state and classical entropy being 
uncorrelated between various sites. In the superfluid state the measured 
Rényi entropy curves are asymmetric and first increase with the system 
size, then fall again as the subsystem size approaches that of the full 
system. This represents the combination of entanglement entropy and 
the linear classical entropy. The non-monotonicity is a signature of 
the entanglement entropy, as the entropy for a pure state must vanish 
when the subsystem size is zero or the full system. The asymmetry due 
to classical entropy is absent in the mutual information.

The mutual information between two subsystems comes from the 
correlations across their separating boundary. For a 4-site system, 
the boundary size ranges from one to three for various partitioning 
schemes. Among those schemes with a single boundary, maximum 
mutual information in the superfluid is obtained when the boundary 
divides the system symmetrically (Fig. 5a). Increasing the boundary 
size increases the mutual information, as more correlations are inter-
rupted by the partitioning (Fig. 5c).

Mutual information also elucidates the onset of correlations between 
various sites as the few-body system crosses over from a Mott insula-
tor to a superfluid phase. In the Mott insulator phase (U/Jx ≫ 1) the 
mutual information between all sites vanish (Fig. 5c, bottom). As the 
particles start to tunnel, only the nearest-neighbour correlations start 
to build up (U/Jx ≈  12) and the long-range correlations remain negligi-
ble. Further into the superfluid phase, the correlations extend beyond 
the nearest neighbour and become long range for smaller U/Jx. These 
results suggest disparate spatial behaviour of the mutual information 

in the ground state of an uncorrelated (Mott insulator) and a strongly 
correlated phase (superfluid). For larger systems this can be exploited 
to identify quantum phases and the onset of quantum phase transitions.

Non-equilibrium entanglement dynamics
Away from the ground state, the non-equilibrium dynamics of a quan-
tum many-body system is often theoretically intractable. This is due to 
the growth of entanglement beyond the access of numerical techniques, 
such as the time-dependent density matrix renormalization group the-
ory46,47. Experimental investigation of entanglement may shed valuable 
light onto non-equilibrium quantum dynamics. Towards this goal, we 
study a simple system: two particles oscillating in a double well37,48. The 
non-equilibrium dynamics are described by the Bose–Hubbard model. 
The quantum state of the system oscillates between unentangled (parti-
cles localized in separate wells) states and entangled states in the Hilbert 
space spanned by | 1, 1〉 , | 2, 0〉  and | 0, 2〉 . Here, | m, n〉  denotes a state 
with m and n atoms in the two subsystems (wells), respectively. Starting 
from the product state | 1, 1〉  the system evolves through the maximally 
entangled states | 2, 0〉  +  | 0, 2〉  ±  | 1, 1〉  and the symmetric, HOM-like 
state | 2, 0〉  +  | 0, 2〉 . In the maximally entangled states the subsystems 
are completely mixed, with a probability of 1/3 of having zero, one or 
two particles. The system then returns to the initial product state | 1, 1〉  
before re-entangling. In our experiment, we start with a Mott insulating 
state (U/Jx ≫ 1), and suddenly quench the interaction parameter to a 
low value, U/Jx ≈  0.3. The non-equilibrium dynamics is demonstrated 
(Fig. 6) by the oscillation in the second-order Rényi entropy of the sub-
system, while the full system assumes a constant value originating from 
classical entropy. This experiment also demonstrates entanglement in 
HOM-like interference of two massive particles.

Summary and outlook
In this work, we perform a direct measurement of quantum purity, the 
second-order Rényi entanglement entropy, and mutual information 
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Figure 5 | Rényi mutual information in the ground state. Any 
contribution from the extensive classical entropy in our measured Rènyi 
entropy can be factored out by constructing the mutual information 
IAB =  S2(A) +  S2(B) −  S2(AB). a, We plot the summed entropy 
S2(A) +  S2(B) (in blue, green and light blue corresponding to the partitions 
shown) and the entropy of the full system S2(AB) (in red) separately. 
Mutual information is the difference between the two, as shown by the 
arrow for a partitioning scheme. In the Mott insulator phase (U/Jx ≫ 1) 
the sites are not correlated, and IAB ≈  0. Correlations start to build up 
for smaller U/Jx, resulting in a non-zero mutual information. The theory 
curves are from exact diagonalization, with added offsets consistent with 
the extensive entropy in the Mott insulator phase (about 0.5 for the full 
system). b, Classical and entanglement entropies follow qualitatively 
different scaling laws in a many-body system. The top panel in b shows 
that in the Mott insulator phase classical entropy dominates and S2(A) 

and S2(B) follow a volume law: entropy increases with the size of the 
subsystem. The mutual information IAB ≈  0. The bottom panel in b shows 
the non-monotonic behaviour of S2(A) and S2(B) in the superfluid regime, 
due to the dominance of entanglement over classical entropy, which 
makes the curves asymmetric. IAB restores the symmetry by removing the 
classical uncorrelated noise. The solid lines are linear (top) and quadratic 
(bottom) fits included as a guide to the eye. The top panel in c shows that 
more correlations are affected (red arrow) with increasing boundary area, 
leading to a growth of mutual information between subsystems. The data 
points are for various partitioning schemes shown in Fig. 4b. The bottom 
panel in c plots IAB as a function of the distance d between the subsystems 
to show the onset and spread of correlations in space, as the Mott insulator 
adiabatically melts into a superfluid. In these plots some overlapping data 
points are offset from each other horizontally for clarity.

© 2015 Macmillan Publishers Limited. All rights reserved

R. Islam et al, Nature (2015) (4 particles)

For experiments: unequivocal evidence of the quantum behaviour  

and some of the most profound and striking manifestations of  

quantum behaviour.  

For RBMs: Shows that the learned RBMs generalize very well 
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CONCLUSION

➤ We encode and discriminate phases and phase transitions, both 
conventional and topological, using neural network technology.  

➤ We have a solid understanding of what the neural nets do in those 
cases through controlled analytical models. 

➤ We have performed QST based on neural networks with results that 
are better than the state-of-the-art and enable the study of 2- and 3-
dimensional quantum systems
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Juan Carrasquilla David Duvenaud Murat Erdogdu Sanja Fidler David Fleet

Brendan Frey Marzyeh Ghassemi Anna Goldenberg Roger Grosse Alireza Makhzani Quaid Morris

Jimmy Ba

Pascal Poupart Daniel Roy Frank Rudzicz Graham Taylor Raquel Urtasun

Learn more:  
• http://vectorinstitute.ai/#people 
• News Release: Vector Institute Doubles AI Faculty 

http://vectorinstitute.ai/#people
https://s3.ca-central-1.amazonaws.com/vectorinstitute.ai/resources/News_Release-Vector_Institute-20171031.pdf


The problem

How can we machine learn a quantum state        from a set of measurements? (�)

Neural-network quantum state tomography

We target a generic quantum state in a reference basis      :
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Learning the phases

Perform the measurements in the rotated basis:
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