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Age of big unlabeled data
25 million gigabytes
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2 million gigabytes European Bioinformatics Institute

How do we make inferences over unlabeled data?
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Generative modeling

* Learns a probability distribution over data a.k.a. density estimation
* Provides a simulator for the data a.k.a. sampling
* Learns latent features for the data a.k.a. representational learning
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Different modalities of structured data
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Graphs are ubiquitous

nodes (or vertices)

Adjacency matrix A € {0,1}" %™

G=AX) Feature matrix X e Rt*Xm

\

edges
(or links)
Sal

Ecology: Food web networks
Biology: Brain networks, Protein-protein interaction networks
Chemistry: Molecules, materials
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Learning deep latent variable models of graphs

p(Z) ZE]RnXk

, G =(AX)
po (AlX,Z) ’

Stanford University




What is the right network architecture for graphs?

Images — Spatial structure — Convolutional Neural Networks (CNN)
Text, Speech — Temporal structure — Recurrent Neural Networks (RNN)
Video — Spatiotemporal structure — Hybrids of CNNs and RNNs

Inductive biases and invariances for graphs?

» Local structure in terms of graph neighborhoods

* Permutation invariance to node reorderings
 Dynamic resizing

Graph Convolutional Networks (Kipf and Welling, 2017)
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Graph Convolutional Networks

* A spectral graph convolution is defined as the multiplication of a signal
(i.e., X) with a parameterized filter Fg in the Fourier space of a graph:

FyxX =UF,U'X

with U as the left eigenvector matrix of the graph Laplacian.

* Graph convolutional networks compute an efficient first order
approximation. Forward pass from H0=V to H®:

HO — n(D—1/2AD—1/2H(l—1)@(Z))

with non-linearity n, degree matrix D, and parameters ().
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Variational Autoencoding using Graphite

« Maximizing the marginal log-likelihood log pg (A|X) is intractable
* Introduce a variational posterior q4(Z|A, X) parameterized by ¢

« Maximize an evidence lower bound (ELBO) to the log-likelihood

pO(Av Z|X)
og po(A|X) > Ey,(z/a,x) [og a4 (Z|A, X)
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ELBO(6, ¢)
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Graphite Encoder

Variational posterior q4(Z|A, X) is a multivariate Gaussian with
diagonal covariance

 Encoder parameterized by a graph convolutional network
A A

l l

X —| GC |— H,— GC |—— yglogag,

Forward pass of a two layer encoding GCN
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Graphite Decoder

Decoder is a hybrid that iterates between:
= intermediate graph construction using an inner product decoder
= IP(Z) = sgm(ZZ")
= message passing on the intermediate graph using graph convolutions

Z~N(ugq,log aq)—a
A A

}
X|Z] — | GC |— Hj— | GC |— 1Z,
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Graphite Decoder

« The final latent feature matrix is specified as a convex combination of
the latent layers

Z' = \Z + (1 — \)Z.,

where A € [0,1] is a tunable hyperparameter.

« Observation model py(A|X, Z) is a factorized multivariate Bernoulli
po(A|Z, X) =TI, 1171 pe(Aij|Z, X)
where po(A;;|Z,X) = O'(Z,’L-Z;-)
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Link Prediction

« Given two nodes in a graph, does an edge exist between the nodes?
Baselines:

« Spectral Clustering (SC)

« DeepWalk (DW): random walks + skipgram objective

 (Variational) Graph Autoencoder (VGAE, GAE): GCN encoder but a
single-step inner product decoder

For Graphite, the task can be formulated as denoising.
Datasets: Protein-protein Interaction, Cora, Citeseer, Pubmed
Evaluation metrics: Area Under the ROC Curve and Average Precision
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Evaluation for Link Prediction

Table 1: Area Under the ROC Curve (AUC) scores for link prediction

| PPI | Cora | Citeseer | Pubmed |
SC 84.2 + 0.34 89.9 + 0.20 915 +0.17 949 + 0.04
DW 68.2 + 0.08 85.0 +£0.17 88.6 +0.15 91.5 +0.04
GAE 88.8 4+ 0.01 90.2 +0.16 902.0+4+0.14 025 +0.06
VGAE 89.5 £+ 0.07 90.1 = 0.15 92.0+0.17 92.3 +0.06
Graphite-AE 91.1 =0.05 914 +0.16 925 +0.16 94.5 + 0.05
Graphite-VAE 91.2 +0.05 914 +0.16 93.0 +0.12 94.6 + 0.04

State-of-the-art on link prediction.
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Evaluation for Link Prediction

-

Table 2: Average Precision (AP) scores for link prediction

| PPI | Cora | Citeseer | Pubmed |
SC 88.9 £ 0.21 928 £0.12 | 944 £ 0.11 96.0 £ 0.03
DW 69.0 £0.09 | 8.6 £0.17 | 903 £0.12 | 91.9 £ 0.05
GAE 894 005 | 924 £0.12 | 940 £ 0.12 943 0.5
VGAE 89.6 =005 | 923 +£0.12 | 942 £0.12 | 94.2 £ 0.04
Graphite-AE 92.1 £0.05 924 £0.17 | 935 +£0.19 | 95.7 = 0.06
Graphite-VAE | 922 £0.06 | 931 +£0.13 | 94.6 =0.12 | 96.0 £+ 0.03

Graphite outperforms competing methods on both ROC and AP metrics!
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Visualization of Latent Space
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Graphite Autoencoder

first dimension

Graphite Variational Autoencoder

Cora Dataset
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Conclusion

Proposed Graphite, an algorithmic framework for generative modeling
of graphs using variational autoencoding.

Outperforms state-of-the-art methods for link prediction.

Future and ongoing work entails applications of Graphite to other
inference tasks such as graph synthesis and semi-supervised node
and graph classification.
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