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Age of big unlabeled data
25 million gigabytes

European Bioinformatics Institute

15 million gigabytes

Pan-STARRS database

2 million gigabytes

How do we make inferences over unlabeled data?

Large Hadron Collider
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Generative modeling

Latent variables

Observed data

• Learns a probability distribution over data a.k.a. density estimation
• Provides a simulator for the data a.k.a. sampling
• Learns latent features for the data a.k.a. representational learning

𝒛

𝒚

𝑝(𝑧)

𝑝(𝑦|𝑧)
What kind of data?
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Different modalities of structured data

Graphs

Images

Audio

Text

Video
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Graphs are ubiquitous

𝐺 = (𝐀, 𝐗) Adjacency	matrix	𝐀 ∈ {0,1}A	×	A
Feature matrix       𝐗 ∈ ℝA	×	D

Ecology: Food web networks
Biology: Brain networks, Protein-protein interaction networks 
Chemistry: Molecules, materials
…
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Learning deep latent variable models of graphs

𝒛

𝒚

𝑝(𝑧)

𝑝(𝑦|𝑧)

𝐺 = (𝐀, 𝐗)

Z ∈ ℝA	×	E

𝐻G

𝐻H

𝑝I(𝐀|𝐗, 𝐙)

𝑝(𝐙)
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What is the right network architecture for graphs?
Images – Spatial structure – Convolutional Neural Networks (CNN) 
Text, Speech – Temporal structure – Recurrent Neural Networks (RNN)
Video – Spatiotemporal structure – Hybrids of CNNs and RNNs

Inductive biases and invariances for graphs?
• Local structure in terms of graph neighborhoods
• Permutation invariance to node reorderings
• Dynamic resizing
Graph Convolutional Networks (Kipf and Welling, 2017)
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Graph Convolutional Networks
• A spectral graph convolution is defined as the multiplication of a signal 

(i.e., X) with a parameterized filter 𝐹L in the Fourier space of a graph:

with U as the left eigenvector matrix of the graph Laplacian.

• Graph convolutional networks compute an efficient first order 
approximation. Forward pass from 𝐇(NOG) to 𝐇(N):

with non-linearity 𝜂, degree matrix 𝐃, and parameters 𝜃(S). 
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Variational Autoencoding using Graphite
• Maximizing the marginal log-likelihood log 𝑝I(𝐀|𝐗) is intractable
• Introduce a variational posterior 𝑞X(𝐙|𝐀, 𝐗) parameterized by 𝜙
• Maximize an evidence lower bound (ELBO) to the log-likelihood

𝐸𝐿𝐵𝑂(𝜃, 𝜙)
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Graphite Encoder

• Variational posterior 𝑞X(𝐙|𝐀, 𝐗) is a multivariate Gaussian with 
diagonal covariance

• Encoder parameterized by a graph convolutional network

𝜇_, log 𝜎_𝐇a𝐗

𝐀

GC GC

Forward pass of a two layer encoding GCN

𝐀
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Graphite Decoder
• Decoder is a hybrid that iterates between:

§ intermediate graph construction using an inner product decoder
§ IP(𝐙) 	= 	sgm(𝐙	𝐙e)

§ message passing on the intermediate graph using graph convolutions

𝐙~𝑁(𝜇_, log 𝜎_)

𝐀h

IP

GC 𝐇i GC 𝐙∗[𝐗|Z]

𝐀h
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Graphite Decoder
• The final latent feature matrix is specified as a convex combination of 

the latent layers

where 𝜆 ∈ [0,1] is a tunable hyperparameter.

• Observation model 𝑝I 𝐀 𝐗, 𝐙 is a factorized multivariate Bernoulli
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Link Prediction
• Given two nodes in a graph, does an edge exist between the nodes?
• Baselines:

• Spectral Clustering (SC)
• DeepWalk (DW): random walks + skipgram objective
• (Variational) Graph Autoencoder (VGAE, GAE): GCN encoder but a 

single-step inner product decoder
• For Graphite, the task can be formulated as denoising.
• Datasets: Protein-protein Interaction, Cora, Citeseer, Pubmed
• Evaluation metrics: Area Under the ROC Curve and Average Precision



14

Evaluation for Link Prediction

State-of-the-art on link prediction.
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Evaluation for Link Prediction

Graphite outperforms competing methods on both ROC and AP metrics!
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Visualization of Latent Space

Graphite Autoencoder Graphite Variational Autoencoder
Cora Dataset
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Conclusion
• Proposed Graphite, an algorithmic framework for generative modeling 

of graphs using variational autoencoding.
• Outperforms state-of-the-art methods for link prediction.
• Future and ongoing work entails applications of Graphite to other 

inference tasks such as graph synthesis and semi-supervised node 
and graph classification.


