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Macroscopic picture
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Classification of W-bosons

Momentum estimates of jet constituents

Infer the progenitor particle of the jet.

W-boson (signal)

N QN
DX} =9 00D (background)

Binary classification problem!
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Jet images

[Oliveira et al arXiv:1511.05190]
[Baldi et al arXiv:1603.09349]
[Barnard et al arXiv:1609.00607]
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Jet images
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Jet parse trees
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Recursive neural network
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Graph neural networks
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Message Passing Neural Network

Algorithm 1 Message passing neural network
Require: N x D nodes x, adjacency matrix A
h <—Embed(x)
fort=1,..., T do
m < Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)
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A problem with the adjacency matrix

Question
Where does adjacency matrix come from?

Use a physics-inspired adjacency matrix.
BONUS: import physics knowledge

Answer 2

Learn the adjacency matrix from the data.
BONUS: export physics algorithm
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Learning the adjacency matrix
F(h,h)=vT(h+H)+b
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Message Passing Neural Network

Algorithm 2 Message passing neural network
Require: N x D array of jet constituents x
h «+—Embed(x)
fort=1,..., T do
A < AdjacencyMatrix,(h)
m < Message:(A, h)
h < VertexUpdate;(h, m)
end for
r = Readout(h)
return Classify(r)
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Same as in [Louppe et al. 2017]

90k/10k/100k examples (train/validation/test)
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Metric: 1/FPR @ TPR = 50%
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Classification results

Model Iterations R.—_509%

Rec-NN (no gating) 1 70.4+3.6
Rec-NN (gating) 1 83.3+31
MPNN (directed) 1 89.4+35
MPNN (directed) 2 98.3+4.3
MPNN (directed) 3 85.0+8.5
MPNN (identity) 3 745+52
Relation Network 1 67.7+6.8
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Results

—— MPNN (learned adjacency matrix)
—— RecNN (nongated)
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Future work

> MPNN is O(n?) — can we make the matrix
sparse?

» Apply MPNN to larger datasets.

» Reduce the number of nodes at each iteration
(attention).

» Use QCD-inspired adjacency matrix for message
passing.

» Export adjacency matrix for sequential
recombination jet algorithms.
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Thank you!
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