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“Within the field of approximate
Bayesian inference, variational
and Monte Carlo methods are
currently the mainstay
techniques.”

— http://approximateinference.org/





Why is Monte Carlo ‘unsound’?
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Metropolis–Hastings

θ′ ∼ q(θ′; θ(s))

if accept:

θ ← θ′

else:

θ ← θ(s)

P (accept) = min

(
1,

p(θ′ | D)

p(θ(s) | D)

q(θ(s); θ′)

q(θ′; θ(s))

)



Recognition networks

θ(s) ∼ p(θ)

x(s) ∼ p(x | θ(s))

Training set:
{
θ(s),x(s)

}S
s=1



Some of the relevant work

Hinton et al. (1995, Science) — Wake Sleep, Helmholtz machine

Morris (2001, UAI) — Recognition Networks

Blum & Francois (2010, S&C) — Conditional Gaussian, neural nets

Fan, Nott, Sisson (2012, Stat) — Mixture of experts

Mitrović, Dino Sejdinović, Teh (2016, ICML) — Kernel regression

...



Fast ε-free Inference of Simulation Models

with Bayesian Conditional Density Estimation

Papamakarios and Murray (NIPS, 2016)

Lueckmann et al. (NIPS, 2017)

— Fit p̂(θ |x) maximize
∑

s log p̂(θ(s) |x(s))



Mixture Density Networks (Bishop, 1994)
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Fast ε-free Inference of Simulation Models

with Bayesian Conditional Density Estimation

Papamakarios and Murray (NIPS, 2016)

Lueckmann et al. (NIPS, 2017)

— Fit p̂(θ |x) maximize
∑

s log p̂(θ(s) |x(s))

— p̂(θ |xobserved) → approx posterior



Fast ε-free Inference of Simulation Models

with Bayesian Conditional Density Estimation

Papamakarios and Murray (NIPS, 2016)

Lueckmann et al. (NIPS, 2017)

— Fit p̂(θ |x) maximize
∑

s log p̂(θ(s) |x(s))

— p̂(θ |xobserved) → approx posterior

— Refine fit: more simulations



Underfitting

θ1

θ 2

θ1
θ 2

True posterior samples samples from Gaussian fit



— Modeling posteriors

— Modeling priors

— Modeling likelihoods



Weighing the Milky Way

Busha, Marshall, Wechsler, Klypin and Primack (2011)

APJ 743:40

Milky Way diagram, NASA

Magellanic Clouds, ESO/S. Brunier

http://en.wikipedia.org/wiki/File:236084main_MilkyWay-full-annotated.jpg

http://www.eso.org/public/images/b01/



Bayesian Inference

p(x |y) ∝ p(y |x) p(x)

x = [r, v,m], vector of galaxy properties

y = [r̂, v̂], noisily observe part of x



The prior: simulation samples



Bayesian inference

What is our Galaxy like?

1. Sample from prior
Imaginary galaxies with mass and companion galaxies

2. Weight samples with likelihood
Chuck out galaxies without companions like ours

3. Use weighted samples
Look at masses of remaining galaxies

That is, do simple importance sampling



Existing answer

2.1 million simulated galaxies

36,000 with two companions

400 within 2σ of Milky Way observations

Busha et al., arXiv:1011.2203v3



Simulations are data. . .

P (x |y,S) ∝ P (y |x)P (x | S)

x = [r, v,m], vector of galaxy properties

y = [r̂, v̂], noisily observe part of x

S = {x(s)}, simulated galaxy vectors



Mixture of Gaussian samples



Simulation samples



AMDN samples



Milky Way mass

p(x) theory: simulated galaxy properties

p(y |x) observations of Milky Way

p(x |y)→ p(x1 |y), posterior of mass
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— Modeling posteriors

— Modeling priors

— Modeling likelihoods



Surrogate modeling / emulation

p(θ | D) ∝ p(θ)
∏
n

p(x(n) | θ)

Cf Cranmer, Pavez, Louppe (2016) arXiv:1506.02169



Thanks!

http://iainmurray.net

NADE variants, MADE, and MAF

ε-free ABC, pseudo-marginal slice sampling



Can do ABC by density estimation

. . . or conditional density estimation

Neural Autoregressive Models
can do both

— Larochelle and Murray (2011)

— Uŕıa, Murray, and Larochelle (2013, 2014)

— Germain, Gregor, Murray, Larochelle (2015)



Building autoregressive models

Lots of credit due elsewhere:

. . .

Frey et al. (NIPS 1996), Frey (book, 1998)

Bengio and Bengio (NIPS, 2000)

Li and Stephens (Genetics, 2003)

. . .



Modeling via the Chain Rule

p(x1)

p(x2 |x1)

p(x3 |x1, x2)

p(x4 |x1, x2, x3)

p(x) = p(x1)

D∏
d=2

p(xd |x<d)
(conditional version straightforward)



Results of inference
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Density estimation
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Conditional density estimation

Can simulate:

Ω → Universe → D, photons in CCD

Want: p(Ω | D)



Application to weak lensing

Can simulate:

Ω → Universe → photons in CCD, D
↓

Shear statistics, ξ̂

Learn: p(Ω | ξ̂)
= p(Ω | D) if ξ̂ a ‘sufficient statistic’

Cf Approximate Bayesian Computation via regression density estimation,
Fan et al., Stat 2013. Also much older ‘recognition networks’.



Example: Image denoising

y: x:

p(x |y) ∝ p(y |x) p(x)
Likelihood: e.g. N (y; x, σ2I)

Prior samples:

. . .



Zoran and Weiss, ICCV 2011

(a) Blurred (b) Krishnan et al. (c) EPLL GMM

Krishnan et al. EPLL-GMM

Kernel 1 17× 17 25.84 27.17

Kernel 2 19× 19 26.38 27.70

Figure 8: Deblurring experiments

5. Discussion
Patch based models are easier to learn and to work with

than whole image models. We have shown that patch models
which give high likelihood values for patches sampled from
natural images perform better in patch and image restora-
tion tasks. Given these results, we have proposed a frame-
work which allows the use of patch models for whole image
restoration, motivated by the idea that patches in the restored
image should be likely under the prior. We have shown that
this framework improves the results of whole image restora-
tion considerably when compared to simple patch averaging,
used by most present day methods. Finally, we have pro-
posed a new, simple yet rich Gaussian Mixture prior which
performs surprisingly well on image denoising, deblurring
and inpainting.

While we have demonstrated our framework using only a
few priors, one of its greater strengths is the fact that it can
serve as a “plug-in” system - it can work with any existing
patch restoration method. Considering the fact that both
BM3D and LLSC are patch based methods which use simple
patch averaging, it would be interesting to see how would
these methods benefit from the proposed framework.

Finally, perhaps the most surprising result of this work,
and the direction in which much is left to be explored, is the
stellar performance of the GMM model. The GMM model
used here is extremely naive - a simple mixture of Gaussians
with full covariance matrices. Given the fact that Gaussian
Mixtures are an extremely studied area, incorporating more
sophisticated machinery into the learning and the represen-
tation of this model holds much promise - and this is our
current line of research.
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p(x) = Mixture of Gaussians fitted to patches



The likelihood: observations

Table 1

Observed Properties of the LMC and SMC

Property LMC SMC Reference

vmax (km s−1) 65 ± 15 60 ± 15 vdM02, S04, HZ06

r0 (kpc) 50 ± 2 60 ± 2 vdM02

s (km s−1)a 378 ± 36 301 ± 104 K06

Notes. For a given satellite, vmax is its estimated maximum circular velocity, r0

is its estimated distance from the Galactic center, and s is its estimated speed

relative to the Galactic center. References are vdM02 = van der Marel et al.

(2002); S04 = Stanimirović et al. (2004); K06 = Kallivayalil et al. (2006a,

2006b); HZ06 = Harris & Zaritsky (2006).
a Errors on s have been increased relative to the published values for conser-

vatism (see the text).

— Busha et al. (2011), APJ 743:40



Parametric assumptions
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Parametric assumptions
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Simulation samples



Mixture of Gaussian samples



Disclaimer

I like mixtures of Gaussians!

Zoran & Weiss ICCV 2011 — denoising/deblurring images

Bovy, Hogg, Roweis 2011 — Extreme deconvolution

Hogg & Lang, 2013 — Replacing Standard Galaxy Profiles

with Mixtures of Gaussians

. . .



GP Density estimation

p(x|f) =
1

Z(f)
Φ(f(x))π(x)

f ∼ GP
Φ = sigmoidal function

π = base measure

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ls
x
 = 1.0, ls

y
 = 1.0, amp = 1.0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ls
x
 = 1.0, ls

y
 = 1.0, amp = 10.0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ls
x
 = 0.25, ls

y
 = 0.25, amp = 5.0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ls
x
 = 0.125, ls

y
 = 2.0, amp = 5.0

Gaussian Process Density Sampler

Adams, Murray and MacKay (2009).


