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Abstract

We propose GAN-based image enhancement models for frequency enhancement of
2D and 3D seismic images. Seismic imagery is used to understand and characterize
the Earth’s subsurface for energy exploration. Because these images often suffer
from resolution limitations and noise contamination, our proposed method performs
large-scale seismic volume frequency enhancement and denoising. The enhanced
images reduce uncertainty and improve decisions about issues, such as optimal well
placement, that often rely on low signal-to-noise ratio (SNR) seismic volumes. We
explored the impact of adding lithology class information to the models, resulting
in improved performance on PSNR and SSIM metrics over a baseline model with
no conditional information.

1 Introduction

In geophysical imaging, resolution limitations of the seismic migration methods are well-
known [Beylkin et al. 1985; Vermeer 1999]. At depths typical of modern exploration targets,
the seismic wavelength can be in excess of 250 meters, meaning that geo-scientists may be unable
to resolve individual rock formations less than 60 meters thick, which is needed to be successful
in exploration settings. In addition, variations in lithology and features such as faults can cause
further disruption and attenuation of the acoustic wave energy. As a result, interpreting the underlying
geological model from these image volumes has high uncertainty and has been the focus of much
of the current and ongoing energy resource exploration. These limitations make purely data-driven
approaches such as image super-resolution techniques to enhance seismic images more attractive.

Image super-resolution is the process of converting low-resolution images into high-resolution ones.
The use of deep neural network approaches to image super-resolution is a growing research area
with real-world applications in various fields [Wang et al. 2019]. Promising attempts at image
super-resolution through deep neural networks include use of a pixel-recursive method [Dahl et al.
2017] and zero-shot learning [Shocher et al. 2017]. A survey of approaches can be found in [Wang
et al. 2019]. Early attempts to use deep learning and GANs for seismic image enhancement have also
shown promise [Halpert 2018].

Our proposed seismic image enhancement approach expounds on the work of [Ledig et al. 2016]
that describes a super-resolution generative adversarial network (SRGAN) model, which we adapt
to support both 2D slices of a 3D seismic cube and 3D cube partitions. Additionally, we employ
pixel-level class conditional information based on geological lithology to improve our performance.
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2 Image enhancement approach

We add conditional information in the form of additional image channels that determine the lithology
class associated with each pixel. We considered two methods in representing lithology class informa-
tion: deterministic and probabilistic. In the deterministic method, the classes are represented as a
one-hot encoded vector for each corresponding image pixel with a total of thirty one possible classes.
In the probabilistic method, the class channel represents the binary probability of a pixel belonging to
the salt class.

To incorporate the class conditional information into SRGAN, we considered multiple fusion locations,
such as early, mid and late fusion [Snoek et al. 2005] and fusion types, such as concatenation and
dot product of the conditional information with ground truth (depicted in Figure 1). Early fusion
meant augmenting the class conditional information at the generator/discriminator input layer. Mid
fusion meant adding the information at the first residual block of the generator, and before the first
residual block of the discriminator. Late fusion happened after all the repeating residual blocks of the
generator, and in the same place as mid fusion for the discriminator. Since input and output images
needed to have the same dimensions, we omitted an upsampling layer in the generator.

2.1 Architecture

Figure 1: SRGAN-based model architecture for enhancing seismic images. In this work, the depth
of the generator and discriminator is represented as a function of the number of repeating residual
blocks.

2



Figure 2: Geological lithology classes for conditioning GAN prediction.

2.2 Loss function

We base our loss function on the work of [Ledig et al. 2016] that defines a perceptual loss function as
a weighted sum of content loss (based on MSE loss) and adversarial loss respectively.

lMSE =
1

w · h

i=w∑
i=1

j=h∑
j=1

(xi,j −G(z|c)i,j))2 (1)

In Equation 1, w and h refer to image pixel width and height respectively, G is the generator function
that takes as input both the noisy image z and conditional information c, and x is the ground truth
image. Minimizing MSE loss maximizes peak signal-to-noise ratio (PSNR), which is a commonly
used image quality estimation. The adversarial loss is based on [Mirza and Osindero 2014] that
adds extra conditional information to the two-player minimax game with value function V (D,G)
originally proposed in [Goodfellow et al. 2014].

min
G

max
D

V (D,G) = Ep[log(D(x|c)) + log(1−D(G(z|c)))] (2)

where p is the joint distribution of x, y, and c. Note that this differs from standard GAN formulations
in that the noise is not explicitly sampled, but is a result of the observation process of the ground truth
x that yields z and c. D refers to the discriminator function, which pushes the generator to output
images in the enhanced seismic image manifold. We further direct the generation process of G by
conditioning both G and D with additional information c that refers to the lithology classes in our
study.

3 Experiments

3.1 Seismic Dataset

More than 100 000 training images were extracted from the SEAM I dataset [Fehler and Keliher
2011]. This seismic data is a result of a finite difference forward model where a simulation of an
acoustic wave field is propagated through the earth model volume computationally. The original
earth model is also a synthetic model that was designed to effectively reproduce the actual lithology
and structure found in the earth’s subsurface in sedimentary basins where energy exploration and
production occurs. As a result, the lithologies and labels of the rock properties are known down to
the pixel scale. The lithology classes considered for the study are shown in Figure 2.

To generate the degraded seismic image input, we used a 5Hz low-pass filter and added 50% uniform
random noise.
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(a) Ground truth seismic data (full
bandwidth).

(b) Degraded input (filtered and
additive noise).

(c) Generated output with no
conditional information.

(d) Generated output with
conditional information.

Figure 3: Comparison of generated seismic images (bottom) with ground truth (a) and degraded
input (b) (top). Red ovals in (c) and (d) highlight two regions of improved data resolution from using

geological conditioning information.

3.2 Metrics

To validate the model, we considered the following objective image quality metrics: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM) and multi-scale SSIM (MS-SSIM). The
multi-scale method (MS-SSIM) provides more flexibility in that it can incorporate image details at
different resolutions.

3.3 Results for 2D

The outputs of our 2D models were visually examined by domain experts, who verified the efficacy of
the approach (see Figure 3). The results were visually examined to determine if reflection amplitude,
phase, and coherence were consistent with the high frequency image as well as the underlying earth
model. Table 1 summarizes the best results we obtained from the different 2D image enhancement
models. We achieved the best result using a model trained with probabilistic conditional information
(second row of Table 1). In our experiments, conditional models appear to have performed better
than Vanilla SRGAN (baseline) in most cases, regardless of fusion strategy.
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(a) 3D image ground truth. (b) Degraded 3D image used as
input data.

(c) Enhanced 3D image.

Figure 4: Cross-sections of an image volume for ground truth (a), degraded input (b) and model
output (c) respectively. The image in (a) identifies the three different transects through the cube -

plane view a, x-y cross-section b, and z-y cross-section c.

Table 1: Summary of best results for 2D

Model Generator Depth Fusion Type Fusion Pos MS-SSIM SSIM %SSIM Gain PSNR % PSNR Gain
Vanilla SRGAN 16 - - - 0.549 - 20.47 -
Probabilistic 32 Concat Early 0.784 0.656 19.48 22.97 12.21
Deterministic 32 Dot Mid 0.785 0.642 16.93 22.96 12.16
Deterministic 8 Dot Late 0.760 0.600 09.28 22.13 08.11
Probabilistic 8 Concat Early 0.741 0.575 04.73 20.87 01.95

Table 2: Summary of results for 3D

Model Fusion Type Fusion Pos SSIM SSIM % Gain PSNR % PSNR Gain
Vanilla SRGAN - - 0.94 - 29.95 -
Deterministic Concat Late 0.98 4.25 33.22 10.91
Deterministic Concat Early 0.95 1.06 30.40 1.5

3.4 Results for 3D

Table 2 summarizes the results of the different 3D image enhancement models, with the best
result obtained using a model trained with deterministic information and late fusion. Even without
conditional information in the Vanilla SRGAN model, we were still able to achieve an SSIM of 0.94.
Figure 4 provides a visual comparison of the 3D model outputs by showing orthogonal cross-sections
through the 3D image volume. For models trained with deterministic information, late fusion with
concatenation provided the best results.

4 Conclusion and Future Work

We were able to achieve improved performance on seismic image enhancement tasks using an
SRGAN-based model with conditional information over one that did not have such information for
2D and 3D cases. Models trained with probabilistic information performed better than models trained
on deterministic information on all metrics used in this study. In spite of this, the Vanilla SRGAN
model was still able to produce enhanced seismic images that were visually similar to ground truth.
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5 Appendix

5.1 Performance Comparisons

Some of our performance improvements result from training and tuning the models on Google Cloud
AI Platform. We utilized the TF-GAN library for all of our experiments. A summary of performance
improvement results are shown in Table 3.

Table 3: Performance Comparison on GPUs vs TPUs

Metric GPU TPU

Performance Evaluation Set - MSE 0.022 0.00494
Batch Size Batch Size 1 16
Processing HW Processing Hardware 7 Tesla P100s Basic TPU
Speed Samples/s 4 samples/sec 11 samples/sec
Cost ML Units per 1k samples 1.9 0.7

Table 3 summarizes our results on the box noise dataset with a model trained on deterministic
information. This was run for our baseline model with 2 repeating residual blocks in the generator
and 2 blocks in the discriminator. The conditional information was added in via concatenation.

Table 4 details results for a batch prediction run for 5000 3D Cubes.

Table 4: Speed up comparison using GPU’s for Batch Prediction

CPU Time(minutes) GPU Time(minutes) GPU Speedup
208 15 13.8X

Reproducibility: The variance in SSIM is 0.05 on evaluation as observed after multiple runs at the
end of full training.

5.2 Additional information

Table 5 elaborates more on the information on hyperparameters tuned. We list a more specific range
of parameters used for both 2D and 3D datasets.

Table 5: Specific range of values used for hyperparameter tuning in 2D and 3D

Parameter Min Value Max Val Scale
2D Generator Depth 16 40 Linear
2D Discriminator Depth 6 18 Linear
2D Batch Size 6 12 Integer
3D Generator Depth 1 7 Linear
3D Discriminator Depth 1 6 Linear
3D Batch Size 1 4 Integer

Figure 5 offers a visual comparison of outputs of the 2D models we trained with the low-resolution
input images and ground truth.

5.3 Experiment setup

We used Google Cloud AI Platform to run model training and hyperparameter tuning in the cloud,
enabling us to leverage Tesla P100 GPUs and Google TPUs for training and Tesla P100 GPUs for
inference. We used the TensorFlow GAN Estimator framework [Abadi et al. 2015] to implement the
model.
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(a) Degraded input. (b) Vanilla SRGAN. (c) SRGAN with
probabilistic
information.

(d) SRGAN with
deterministic
information.

(e) Ground truth.

Figure 5: Sample output of 2D models: Vanilla SRGAN (b), probabilistic (c) and deterministic (d)
conditional SRGANs compared to the degraded input data (a) and ground truth (e). Both conditional

SRGAN outputs show a marked decrease in coherent noise artifacts (diagonal vertical striping)
compared to the ground truth image.

The models were trained for 100 000 steps with a batch size (hyperparameter) of 8 examples. We
used AI Platform Hyperparameter Tuning, which is based on Google Vizier [Golovin et al. 2017], to
optimize model performance.

5.4 Open Source Implementation

An open source implementation of the work of [Ledig et al. 2016] is publicly available [Dong et al.
2017]. This provides a similar base implementation of what we used for our Vanilla SRGAN model.
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