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Abstract

We introduce a generative model to simulate radiation patterns within a jet using
the Lund jet plane. We show that using an appropriate neural network architecture
with a stochastic generation of images, it is possible to construct a generative
model which retrieves the underlying two-dimensional distribution to within a few
percent. We compare our model with several alternative state-of-the-art generative
techniques. Finally, we show how a mapping can be created between different
categories of jets, and use this method to retroactively change simulation settings
on an existing sample. These results provide a framework for significantly reducing
simulation times through fast inference of the neural network as well as for data
augmentation of physical measurements.

1 Introduction

One of the most common objects emerging from hadron collisions at particle colliders such as
the Large Hadron Collider (LHC) are jets. These are loosely interpreted as collimated bunches of
energetic particles emerging from the interactions of quarks and gluons, the fundamental constituents
of the proton [1, 2], and usually defined through a sequential recombination algorithm [3–5].

In recent years, there has been considerable interest in applications of generative adversarial networks
(GAN) [6] and variational autoencoders (VAE) [7] to particle physics, where such generative models
can be used to significantly reduce the computing ressources required to simulate realistic LHC
data [8–15]. In these proceedings and its companion paper [16], we introduce a generative model to
create new samples of the substructure of a jet from existing data. We use the Lund jet plane [17]
as a visual representation of the clustering history of a jet, which provides an efficient encoding of
radiation patterns and can be directly measured experimentally [18]. The Lund jet image is used to
train a Least Square GAN (LSGAN) [19] to reproduce simulated data within a few percent accuracy.
Finally, we show how a cycle-consistent adversarial network (CycleGAN) [20] can be used to create
mappings between different categories of jets. We apply this framework to retroactively change the
parameters of the parton shower on an event, adding non-perturbative effects to an existing sample.

2 Generating jets

To describe the radiation patterns of a jet, we will use the primary Lund plane representation [17],
which can be projected onto a two-dimensional image that serves as input to a neural network.

The Lund jet plane is constructed by reclustering a jet’s constituents with the Cambridge-Aachen
(C/A) algorithm [4, 21]. This algorithm sequentially recombines pairs of particles that have the
minimal ∆2

ij = (yi − yj)2 + (φi − φj)2 value, where yi and φi are the rapidity and azimuth of
particle i.

This clustering sequence can be used to construct an n × n pixel image describing the radiation
patterns of the initial jet. We iterate in reverse through the clustering sequence, labelling the momenta
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Figure 1: Left two figures: Sample input images before and after preprocessing. Right two: sample
generated by the LSGAN and the corresponding Lund image.

of the two branches of a declustering as pa and pb, ordered in transverse momentum such that
pt,a > pt,b. This procedure follows the harder branch a and at each step we activate the pixel on
the image corresponding to the coordinates (ln ∆ab, ln kt), where kt = pt,b∆ab is the transverse
momentum of particle b relative to pa + pb.

The data sample used in this article consists of 500k jets, generated using the dijet process
in Pythia v8.223, and clustered using the anti-kt algorithm [5, 22] with radius R = 1.0.
Unless specified otherwise, results use the Delphes v3.4.1 fast detector simulation, with the
delphes_card_CMS_NoFastJet.tcl card to simulate both detector effects and particle flow re-
construction. The simulated jets are then converted to Lund images with 24× 24 pixels each, where
a pixel is set to one if there is a corresponding (ln ∆ab, ln kt) value in the primary declustering
sequence, otherwise it is left at zero.

We will train a neural network to create new samples from this reference data using generative
adversarial networks [23]. They are constructed using both a generator G and discriminator D, which
are competing against each other through a value function V (G,D)

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] , (1)

where we defined pz(z) as a prior on input noise variables. Thus D is trained in order to maximise
the probability of correctly distinguishing the training examples and the samples from G, while the
latter is trained to minimise log(1−D(G(z))). The generator’s distribution pg optimises equation (1)
when pg = pdata, so that the generator learns how to generate new samples from z.

In practice, we found improved performance when using a Least Square Generative Adversarial
Network (LSGAN) [19], a specific class of GAN which uses a least squares loss function for the
discriminator. The main advantage of the LSGAN over the original GAN framework is a more
stable training process, due to an absence of vanishing gradients. In addition, we include a minibatch
discrimination layer [24] to avoid a collapse of the generator.

The LSGAN is trained on the full sample of QCD Lund jet images. In order to overcome the limitation
of GANs due to the sparse and discrete nature of Lund images, we first re-sample our initial data set
into batches of navg and create a new set of 500k images, each consisting of the average of navg initial
input images, which are reinterpreted as physical events through a random sampling, where the pixel
value is interpreted as the probability that the pixel is activated. A further data preprocessing step
before training the LSGAN consists in rescaling the pixel intensities to be in the [−1, 1] range, and
masking entries outside of the kinematic limit of the Lund plane. The images are then whitened using
zero-phase components analysis (ZCA) whitening [25]. The optimal choice of hyperparameters is
determined using the distributed asynchronous hyperparameter optimisation library hyperopt [26].

In figure 1 the first two images illustrate an example of input image before and after preprocessing
while the last two images represent the raw output from the LSGAN model and the corresponding
Lund image.

The final averaged results for the Lund jet plane density is shown in figure 2a. The ratio of the
generated sample and the reference data is shown in 2b, where we can observe a good agreement
between the reference and the artificial sample generated by the gLund model. The model is able
to reproduce the underlying distribution to within a 3-5% accuracy in the bulk region of the Lund
image. Larger discrepancies are visible at the boundaries of the Lund image and are due the vanishing
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Figure 2: (a) Average Lund jet plane density for a data set generated by the gLund model and (b)
ratio between the generated and reference sample. (c) Slice along kt with 0.13 < ∆ab < 0.31

pixel intensities. In practice this model provides a new approach to reduce Monte Carlo simulation
time for jet substructure applications as well as a framework for data augmentation. Finally, in
figure 2c we show the distribution obtained for a slice of fixed ∆ab size, cutting along the Lund jet
plane vertically. The reference Pythia 8 sample is shown in red, with alternative models based on
a variational autoencoder [7, 27, 28] and a Wasserstein GAN [29, 30] shown in green and orange
respectively. The lower panel gives the ratio of the different models to the reference Pythia 8 curve,
showing very good performance for the LSGAN and WGAN-GP models, which are able to reproduce
the data within a few percent.

3 Reinterpreting events using image-to-image translations

Let us now introduce a novel application of domain mappings to reinterpret existing event samples.
To this end, we implement a cycle-consistent adversarial network (CycleGAN) [20], which is an
unsupervised learning approach to create translations between images from a source domain to a
target domain.

Using as input Lund images generated through different processes or generator settings, one can use
this technique to create mappings between different types of jet. As an example, we will consider a
mapping from parton-level to detector-level images.

The cycle obtained for a CycleGAN trained on parton and detector-level images is shown in figure 3a,
where an initial parton-level Lund image is transformed to a detector-level one, before being reverted
again. The sampled image is shown in the bottom row.

A CycleGAN learns mapping functions between two domains X and Y , using as input training
samples from both domains. It creates an unpaired image-to-image translation by learning both
a mapping G : X → Y and an inverse mapping F : Y → X which observes a forward cycle
consistency x ∈ X → G(x) → F (G(x)) ≈ x as well as a backward cycle consistency y ∈ Y →
F (y)→ G(F (y)) ≈ y. This behaviour is achieved through a cycle consistency loss

Lcyc(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖1] + Ey∼pdata(y)[‖G(F (y))− y‖1] , (2)

Additionally, the full objective L includes also adversarial losses to both mapping functions such that
G is incentivized to generate images G(x) that resemble images from Y , while the discriminator
DY attempts to distinguish between translated and original samples. Thus, CycleGAN aims to find
arguments solving G∗, F ∗ = arg minG,F maxDX ,DY

L.

We implemented a CycleGAN framework, labelled CycleJet, that can be used to create mappings
between two domains of Lund images. By training a network on parton and detector-level images,
this method can thus be used to retroactively add non-perturbative and detector effects to existing
parton-level samples. Similarly, one can train a model using images generated through two different
underlying processes, allowing for a mapping e.g. from QCD jets to W or top initiated jets.

In the first row of figure 3b we show results for an initial average parton-level sample before (left)
and after (right) applying the parton-to-detector mapping encoded by the CycleJet model, while in
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Figure 3: (a) Top: transition from parton-level to delphes-level and back using CycleJet, bottom:
corresponding sampled event. (b) Top: average of the parton-level sample before (left) and after
(right) applying the parton-to-detector, bottom: delphes-level sample before and after applying the
detector-to-parton.

the second row we perform the inverse operation by taking as input the dephes-level sample before
(left) and after (right) applying the CycleJet detector-to-parton mapping. This example shows clearly
the possibility to add non perturbative and detector effects to a parton level simulation within good
accuracy. Similar mappings can be created with good accuracy e.g. to transform a sample of QCD
jets into a W jet sample.

This method allows for the possibility to use such an approach to save CPU time for applying full
detector simulations and non perturbative effects to parton level events. It is also possible to train the
CycleJet model on Monte Carlo data and apply the corresponding mapping to real data.

4 Conclusions

We have conducted a careful study of generative models applied to jet substructure.

First, we trained a LSGAN model to generate new artificial samples of detector level Lund jet images.
With this, we observed agreement to within a few percent accuracy with respect to the reference data.
This new approach provides an efficient method for fast simulation of jet radiation patterns without
requiring the long runtime of full Monte Carlo event generators. Another advantage consists in the
possibility of this method to be applied to real collider data to generate accurate physical samples,
as well as making it possible to avoid the necessity for large storage space by generating realistic
samples on-the-fly.

Secondly, a CycleGAN model was constructed to map different jet configurations, allowing for the
conversion of existing events. This procedure can be used to change Monte Carlo parameters such as
the underlying process or the shower parameters. As examples we show how to add non perturbative
and detector effects to a parton level simulation. As for the LSGAN, this method can be used to save
CPU time by including full detector simulations and non perturbative effects to parton level events.
Additionally, one could use CycleJet to transform real data using mappings trained on Monte Carlo
samples or apply them to samples generated through gLund.

The full code and the pretrained models presented in this paper are available in [31, 32].
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