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Abstract

Humans will soon be returning to the Moon, with the goal of establishing permanent
bases within the next 20 years. A key challenge in this endeavour is to locate
resources on the lunar surface, such as metals, which can be used to build such
settlements. Although the Moon has been extensively mapped across multiple
wavelengths, inferring the presence of metals from this data is challenging because
there exists very little ground truth observations to calibrate physical models to. We
take a data-driven approach and use unsupervised learning to search for metallic
signatures. We train a convolutional variational autoencoder (VAE) on thermal
satellite data and find it is able to accurately reconstruct temperature variations over
the lunar day. Furthermore we find physically-interpretable correlations between
the VAE’s latent representation and estimated thermal parameters from physics-
based inversion. Using this representation we are able to efficiently generate new
types of thermal anomaly maps which potentially indicate the presence of metals
on the surface of the Moon.

1 Introduction

Establishing a permanent settlement on the lunar surface is one of the most pioneering endeavours
humanity has embarked upon. NASA’s Artemis Program plans to land a manned mission on the Moon
by 2024, with further plans to deploy a lunar outpost in 2028 (Berger, 2019; NASA, 2018, 2019). In
order for humanity to establish a sustainable presence on the Moon, it is critical to understand what
resources are available on the lunar surface.

Metal is a key resource and can be deposited on the surface from impactor influx in the form of metal
meteorites; it is estimated that 3-4% of impacts are from nickel-iron bodies. Nickel-iron meteoric
fragments have also been found embedded in samples from the Apollo missions (Wingo, 2005).
However, while large Iron-nickel meteorites have been found on Earth as well as on the surface of
Mars, they have not yet been found on the Moon, despite the overwhelming amount of remote sensing
data. This presents a challenge as there is very little ground truth to calibrate physical models to.
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Figure 1: Left: evening temperature map over the Tycho crater, plotting the average temperature
over 12 am-4 am in local lunar time. Right: four example temperature profiles extracted over Tycho.
Points show temperature measurements, solid lines show the Gaussian process fits of the profiles
used for interpolation. Colour coded stars in the left plot indicate the locations of the profiles.

The presence of metal meteorites is known to influence the thermal properties of the lunar surface,
providing a potential method for detection (Bandfield et al., 2011, 2015; Zheng et al., 2014; Hayne
et al., 2017; Hu et al., 2018; Miller, 2018). In particular, metals are expected to have a higher thermal
conductivity than the lunar regolith. However, there exists uncertainty in the accuracy of these thermal
models because of the lack of ground truth observations. The Lunar Reconnaissance Orbiter is a
satellite which has acquired over 35 TB of point measurements of the surface temperature during
10 years of operation at a resolution of the order of 100 m using its DIVINER instrument, a passive
infrared radiometer (Williams et al., 2017, 2018; Sefton-Nash et al., 2017).

We take a data-driven approach and apply unsupervised machine learning to search for thermal
anomalies in the DIVINER data. We train a convolutional variational autoencoder (VAE) to recon-
struct variations in the surface temperature over the lunar day. We compare the VAE’s reconstructions
and latent representation to a 1D physics-based inversion. Finally we use its latent representation to
efficiently generate new types of thermal anomaly maps which could indicate the presence of metals.

2 Methods

To search for thermal anomalies we extract all the temperature point measurements recorded by the
DIVINER instrument over 2010-19. We use channel 7 of the instrument, which measures radiance
in the 25-41 µm band and is most sensitive to evening and night-time temperatures in the range
69-178 K. We bin these temperature measurements onto a 200 x 200 m grid and sort the points in each
bin by the local lunar time at which they were recorded, obtaining a 1D profile of the temperature
variation over the lunar day at each bin location.

We extract examples of these profiles over 43 areas of interest (AOI). We select AOIs based on
existing physical maps; 38 have anomalies in their mean annual temperature or total magnetic field
strength, which we believe may indicate the presence of metals; 5 are background locations sampled
from the majority of the lunar surface which does not show these anomalies. The AOIs include
impact craters of different ages, large pyroclastic deposits and swirls (magnetic anomalies), with
areas ranging from 1 - 40,000 km2. We extract profiles whose maximum temporal sampling is lower
than four lunar hours, which results in 112,214 example profiles.

We search for anomalies in the profiles by using a VAE. We use the VAE to compress each profile
into a small set of latent variables and then map these latent variables over the lunar surface. We
chose a VAE to encode the profiles because of its ability to separate independent factors of variation
from its input distribution (Kingma and Welling, 2013). Before inputting the profiles into the VAE,
we interpolate them onto a regular grid by using Gaussian Process (GP) regression (Rasmussen and
Williams, 2005). We fit a GP to each profile with a Matern-1.5 kernel, maximum length scale of
6 hours and assume 10 K standard deviation of uncertainty in each temperature measurement. We
sample every 0.2 hours, resulting in a 1D input profile with 120 samples.

We use a convolutional encoder-decoder for our VAE architecture, with eight convolutional layers in
the encoder and seven transposed convolutional layers in the decoder. All hidden layers use ReLU
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Figure 2: Top left two columns show maps of the four VAE latent variables over the Tycho crater.
Top right shows an optical image of Tycho. Middle right shows a map of the VAE L2 reconstruction
loss. Bottom plots show the reconstructed profiles generated from the VAE when sampling each
latent variable independently and fixing the other latent variables to their mean value.

Figure 3: Left: 1D numerical simulations of the lunar surface temperature against local lunar time.
Our baseline model uses thermal properties estimated for the lunar regolith. The two plots show the
resulting profiles when the thermal conductivity is increased by a factor of 10 and when the albedo is
increased by 0.5.

activation functions, batch normalisation, 32 hidden channels, kernel sizes of 2 and strides of 2. The
final layers of the encoder and decoder have linear activation functions. The output of the encoder
is a latent vector, its length being a hyperparameter, which is reparameterised before being fed into
the decoder. The VAE is trained to reconstruct an input profile using a loss function which sums the
mean squared error and KL divergence between the input and reconstructed profile, with a β-value
of 0.2 (Higgins et al., 2017). We train using the Adam optimiser, a learning rate of 1x10−4 and a
mini-batch size of 200 samples, reserving 20% of the example dataset for cross validation.

We compare our results to a 1D physics inversion. We build a physics model, as proposed by Miller
(2018), simulating the temperature of a surface of material in a vacuum which receives the same
solar radiation over time as a point on the equator of the Moon. We run inversion using this model,
allowing the inversion algorithm to vary the albedo, thermal conductivity and onset time of solar
radiation to best match each input interpolated profile, using a L2 reconstruction loss. Bayesian
optimisation with an expected improvement acquisition function is used as the inversion algorithm
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Figure 4: Top left: Average L1 reconstruction loss for VAEs with varying latent vector lengths n and
the physics inversion, over 1000 profiles from the validation set. Top middle and right: Example
reconstructions from the VAE with n = 4 and the 1D physics inversion, for 3 randomly selected
profiles in the validation set. Bottom: plots showing the correlation between the first 3 VAE latent
values when n = 4 and the estimated parameters from physics inversion, over 1000 profiles from the
validation set. Thermal conductivity scale is relative to the regolith.

(Frazier, 2018). We then compare the estimated parameters from the inversion to the latent variables
generated by the VAE.

3 Results and Discussion

Figure 1 shows example temperature data from the DIVINER instrument over one of our AOIs, the
Tycho crater. An optical image of this crater is shown in Figure 2. We observe a wide variation in
temperature around this crater. Outside of the crater, the surface temperature increases to around
350 K at midday and decreases to 100 K at night. On the Eastern slope of the crater the profiles are
shifted in time by approximately 2.5 hours, which is consistent with the slope’s shadow delaying
the incidence time of the Sun’s radiation. On the Northern slope the peak temperature is lower at
270 K, which is consistent with the slope receiving less thermal radiation per unit area from the
Sun’s elevation at Tycho’s latitude. In the centre of the crater we observe a profile which has a
higher evening temperature around 150 K. Figure 3 (left) plots our physics model simulation when
varying thermal conductivity; one explanation is that the material at this location has a higher thermal
conductivity than its surroundings, which could potentially indicate the presence of metal.

Figure 4 (top) shows the average reconstruction loss after training the VAE, when varying the number
of latent variables, n. We observe that this reconstruction loss asymptotes at n = 4. We also plot this
loss after the 1D physics inversion, which is significantly higher than the VAE loss. Figure 4 suggests
that only 4 latent values are needed to describe the temperature profiles and furthermore the VAE is
more accurate at reconstructing the profiles than the physics model.

Figure 2 shows example profiles generated by the VAE when varying each latent variable indepen-
dently and fixing the others to their mean values, for the VAE with n = 4. We observe that latent
variable 1 responds to the onset of the profile, latent 2 responds to the peak temperature, latent 3
responds to the evening temperature “sidelobe” and latent 4 appears to learns a residual. We compare
the latent values with the estimated parameters from 1D physics inversion in Figure 4 (bottom).
We find that latent 1 and 2 strongly correlate to the estimated solar radiation onset time and albedo
respectively, whilst latent 3 somewhat correlates with the estimated thermal conductivity.

Given this physical interpretation, we generate maps of the latent variables to search for anomalies.
We note that generating these maps is two orders of magnitude faster than running the inversion, which
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allows this approach to be scaled over large areas. Maps of the variables and the L2 reconstruction
loss over Tycho are shown in Figure 2. Latent 3 is particularly interesting as it shows high values on
the Western side and centre of the crater which could indicate high thermal conductivity, potentially
related to metals. The L2 loss map can also be used to identify locations with extreme thermal
behaviour outside of the VAE training distribution which could relate to high contrasts in chemical or
mineralogical composition.

4 Conclusion and Further Work

We have shown that unsupervised learning can aid the detection and understanding of thermal
anomalies on the lunar surface. We trained a VAE which was able to accurately encode variations in
the lunar surface temperature. When combined with physics-based inversion, its latent representation
improved our understanding of the physical factors of variation in the surface temperature. Its latent
representation allowed us to generate new types of anomaly maps, two orders of magnitude faster
than inversion, which potentially indicate the presence of metals.

Further work includes producing global anomaly maps with our workflows, building more complex
physics models to aid our physical interpretation of the VAE and incorporating physics models
directly in the training of our VAE to constrain our latent representation further.
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