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Abstract

Multi-fidelity learning is a significant tool in the intersection of machine learning
and engineering sciences that enables learning a surrogate model from multiple
fidelity of data sources with different accuracy and varying cost of data generation.
One of the common assumptions in this tool is the presence of homogeneous input
domain across all fidelities, which creates a limitation for surrogate modeling
required in engineering design problem. This paper proposes an approach to extend
this capability towards incorporating input domains which are heterogeneous
in their dimensionality across the fidelities. The proposed approach is tested
on an airfoil problem where a surrogate is generated from multiple fidelities of
computational fluid dynamics (CFD) solvers with heterogeneous input domains
and single target quantity of interest (QoI) and it is demonstrated to exhibit better
predictive accuracy compared to the surrogate learned only from a sparse data
generated by high fidelity solver.

1 Introduction

Designing complex physical systems generally go through an iterative process where physical
solvers of different predictive accuracy and compute cost, and experiments/testing are invoked
to generate supporting data on the design quantity of interest (QoI) or design objectives. This
type of repetitive design loop involving aforementioned variable-fidelity data sources can become
prohibitively expensive and it results in a slow development process in the fields of aerospace, material
science and drug discovery. One approach to accelerate a design process is to learn surrogate models
that can predict QoI from design variables much faster than physical solvers within an acceptable
tolerance and run surrogate assisted optimization (SAO) [1]. Multi-fidelity learning is a tool that
enables learning surrogate models from multiple fidelity of physical solvers where higher fidelity
solvers generate more accurate QoI but they are computationally more expensive compared to lower
fidelity solvers, sometimes by many orders. To give an example with respect to a compute of a
hundred CPU cluster, a 3-dimensional CFD evaluation of the flow field around a standard airfoil can
take about few minutes to complete at Reynolds Averaged Navier Stokes (RANS) fidelity and up to
few days to weeks at Large Eddy Simulation (LES) fidelity.

A common machine learning approach for learning probabilistic multi-fidelity surrogates is based on
a multi-variate Gaussian process and a simple linear auto-regressive correlation model to propagate
information across fidelities [2–6]. Recent works in this area [7–9] have demonstrated the remarkable
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effectiveness of this approach in accelerating the simulation-based design of complex dynamic
systems (e.g., shape optimization of super-cavitating hydrofoils, high dimensional design optimization
of NASA rotor-37 airfoil) primarily using low cost and low fidelity solvers, guided by a small number
of judiciously selected evaluations of expensive high-fidelity models.

In many physical systems design optimization, although the target QoIs remain the same across all
information sources employed within each discipline, every source admits its own parameterization
(e.g., design variable and operating conditions). Unfortunately, this parametric and geometric
heterogeneity cannot be directly addressed using state-of-the-art multi-fidelity learning formulations
and requires the development of a new mathematical framework for synthesizing variable fidelity
data that originate from disjoint input domains, i.e., multi-source data in general.

This paper proposes an approach of learning a recursive mapping to extend the capability of multi-
fidelity learning towards incorporating input domains which are heterogeneous in their dimensionality
across the fidelities. The proposed approach is tested on an airfoil problem where a multi-fidelity
surrogate is generated from multiple fidelities of computational fluid dynamics (CFD) solvers with
variable input domains and single target QoI and it is demonstrated to exhibit better predictive
accuracy compared to the surrogate learned only from sparse data generated by higher fidelity solver.

2 Method

Let’s assume that xL ∈ Rn is the input to lower fidelity solver gL and the corresponding QoI is
yL ∈ R. Similarly, for higher fidelity solver gH , the input is xH ∈ Rm and it generates a output
yH ∈ R. Generally in practice, m > n and the volume of samples available from gL is higher than
gH as gH is computationally more expensive. By taking inspiration from the area of heterogeneous
transfer learning (HTL) [10], we propose to learn an asymmetric mapping ϕ : Rn 7→ Rm from
xL domain to xH domain. See figure 1 for a graphical representation of our proposed approach.
This framework can be recursively applied when the number of fidelities is more than 2. Once the
dimensionality of lower fidelities are brought up to that of highest fidelity, an auto-regressive co-
kriging framework can be applied as follows. The mapping ϕ is learned as a multi-input multi-output
regressor on the data with corresponding heterogeneous input pairs across fidelities. Preferred models
for learning ϕ should be able to handle low sample-to-variable ratio.

Figure 1: Heterogeneous multi-fidelity modeling

The auto-regressive multi-fidelity learning here is based on Gaussian Processes (GP) [2], which is a
non-parametric regression approach commonly used in supervised statistical learning. GPs are a class
of stochastic processes that assume a multivariate, jointly Gaussian probability distribution for any
finite collection of random variables. For example, if the function f(x) for an input x is considered
a random variable, then, for a finite sub-collection {x1, x2, . . . , xT }, the corresponding function
outputs {f(x1), f(x2), . . . , f(xT )} are assumed to have a multivariate jointly Gaussian distribution: f(x1)

...
f(xT )

 ∼ N

 m(x1)

...
m(xT )

 ,
 k(x1, x1) · · · k(x1, xT )

...
k(xT , x1) · · · k(xT , xT )


 (1)

where the underlying Gaussian process is completely characterized by a mean function : m(x) ,
E[f(x)], and a covariance function : k(x, x′) , E[(f(x) −m(x))(f(x′) −m(x′))]. The skeleton
of our approach is based on the autoregressive co-kriging approach put forth by Kennedy and
O’Hagan [3]. The multi-fidelity GP approach is presented in a recursive form as:

ft(x) = ρt−1ft−1(x) + δt(x), 2 ≤ t ≤ Q (2)

where ρt−1 quantifies the correlation between ft(x) and ft−1(x), and the Gaussian process δt(x)
represents the discrepancy between ft(x) and ft−1(x). In this formulation, t refers to the fidelity level
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Table 1: descriptions of inputs, fidelity solvers for the output QoI of pressure drop (PT )
Fidelity input (x) fidelity solver (f ), run time

Low (L) xL ∈ R2, rms of camber and thickness Euler, 82 seconds
High (H) xH ∈ R6, 3 values for each of camber and thickness RANS, 385 seconds

Figure 2: Left: Fine mesh RANS with 55000 nodes (top) and its velocity field (bottom), Right: Euler
with 15000 nodes (top) and its velocity field (bottom)

ranging from 2 to Q (number of fidelities), where ft(x) is the higher fidelity output and ft−1(x) is the
lower fidelity output. We use a noisy GP model with zero mean for each fidelity, where the outputs at
each fidelity level are noise corrupted, i.e. yt ∼ N (0, σ2

εt). The kernel function is parameterized by a
set of hyper-parameters θ and the GP priors belongs to the class of automatic relevance determination
(ARD) Matérn covariance functions [2].

3 Results

The proposed approach is tested on the problem of building multi-fidelity surrogate to obtain a
predictive model between geometric design variables of a transonic NASA rotor 37 airfoil and relative
total pressure drop (PT ) across it. PT is obtained from post-processing of the CFD solution and it is
an important performance parameter to optimize its shape for maximizing efficiency and work.

Table 1 describes the inputs, solvers and respective computational complexity for the QoI of PT
for each fidelity. In this case, solvers are run on 2 dimensions over the cross section at 70% span
of the airfoil and the airfoil shape is parameterized by spline distribution of camber and thickness.
Fidelity-specific mesh resolutions and velocity fields at 2D are presented in figure 2. To visualize the
fluid dynamics loss mechanism within the airfoil passage, plotting the Mach number is instrumental
to identify the shock and separation behaviors that influence PT .

From the Euler solver, 200 samples are generated with 2-dimensional lower fidelity input xL (rms of
camber and thickness) and target QoI PT . As the run time of RANS solver is 4.5 times larger, around
68 samples with 6-dimensional higher fidelity input (3 spline coefficients for each of camber and
thickness) and target QoI PT could be generated to represent a realistic scenario. RANS-generated
target values are considered to be high fidelity (HF) ground truth and Euler-generated target values
are denoted as low fidelity (LF) ground truth corresponding to their respective input samples. Here
the fidelity levels are not coupled, but correlated.

The asymmetric mapping ϕ : R2 7→ R6 from xL to xH is learned by a multi-input multi-output
Gaussian process model trained on the xL − xH pairs at same corresponding input configuration
across fidelities. To validate the fact that the multi-fidelity (MF) surrogate improves the overall QoI
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Figure 3: Left: sample wise ground truths of PT and PT prediction from single fidelity surrogate
model learned from only HF data, and MF surrogate model learned by proposed approach , Right:
Actual vs predicted scatter from single fidelity surrogate model learned from only HF data, and MF
surrogate model learned by proposed approach

Figure 4: Histograms of error in PT prediction w.r.t the HF ground truth by surrogate models learned
only from LF data, single fidelity surrogate model learned only from HF data, and MF surrogate
model learned by proposed approach

prediction, it is compared with a similar complexity Gaussian process model trained only on HF
ground truths. This validation exercise is performed by a 10-fold cross validation set up.

Figure 3 presents sample-wise prediction of PT aggregated over 10-fold cross validation from
different models and the scatter around HF ground truth. Although PT prediction from Euler solver
has large discrepancy compared to HF ground truth as RANS solver captures more flow physics,
it enriches the multi-fidelity (MF) surrogate by reducing its prediction scatter significantly. Small
prediction scatter is required for incorporating the surrogates reliably into a SAO. Figure 4 presents
that the standard deviation of prediction error is significantly improved by 3 times from 0.682 (HF
only surrogate), which is more than 3% of mean PT , to 0.226 (≤ 1% of mean PT ) by our MF
surrogate model even in the presence of limited HF ground truth and heterogeneous input domains
between low and high fidelity.

4 Conclusions and Future Work

This paper proposes an asymmetric mapping approach for bringing heterogeneous input domains
across multiple fidelities into a homogeneous description to fundamentally extend the capability of
multi-fidelity learning. Our proposed MF learning framework is tested on an airfoil problem where a
multi-fidelity surrogate is generated from multiple fidelities of CFD solvers (e.g., RANS and Euler)
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with variable input domains and single target quantity of interest (QoI) and it is demonstrated to
exhibit 3 times lower predictive uncertainty compared to the predictive surrogate learned only from a
sparse set of data generated by higher fidelity solver. Considering this work an initial attempt towards
tackling heterogeneous multi-fidelity learning, several areas are pursued as ongoing research:

1. Learning mapping between heterogeneous domains when input correspondence is ill-defined.
2. Heterogeneous multi-fidelity learning in the presence of output heterogeneity.
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