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Introduction – In materials science and materials physics, first-principles theoretical investigation
of large and meso scale phenomena is often intractable in part due to the difficulty of sampling
configurations from a near-infinite set of microstates. Obtaining valid, large scale, low energy
microstates that are likely to occur in a macroscopic ensemble can be a time consuming sampling task
[1]. In most cases, Nature is able to sample such distributions efficiently, although there are notable
exceptions such as the glass transition. In silico, sampling the distribution of possible configurations
is a very difficult task due to the enormous number of free parameters (e.g. position, spin, charge,
etc.) defining a near-infinite number of microstates for systems of even a modest number of particles.
This “curse of dimensionality”, for all but the most trivial systems, precludes directly sampling
configuration space at non-zero, finite temperature [2]. Traditionally, Markov Chain Monte Carlo
sampling methods have been devised to obtain random samples from an underlying distribution, but
these algorithms, such as Metropolis-Hastings [3, 4], depend on the ability to efficiently evaluate both
the energy and property of a microstate (or at least the difference in these properties between two
states) which can, in many cases, be a very costly computation. Furthermore, this calculation must be
carried out repeatedly, many more times than the desired number of final microstates.

We use our previously reported technique [5], Regressive Upscaling Generative Adversarial Net-
work (RUGAN) (Figure 1a) that can generate unique microstates from the distribution of possible
microstates after observing only a very small subset. By conditioning the GAN on an associated
quantity, such as the total energy of the microstate, we can “request” that the generated configuration
be of a specific energy. Most importantly, our RUGAN can transfer the knowledge learned by
observing small scale microstates to generate arbitrarily large scale states beyond that used in training
(Figure 1c); it is not limited to small scale generation [6]. This technique enables one to access
large scale microstates while only running expensive sampling methods on a small number of small
systems.

Methods – We demonstrate the technique on a data set of porous graphene sheets, previously
presented in [7]. The study of such systems could be useful in predicting large scale material
properties, such as how the strength of a material depends on hole size or hole density (for example),
but acquiring a sufficient number of relevant, large scale microstates so as to compute statistics
is prohibitively expensive. The sheets are approximately 35 Å × 35 Å with a random number of
randomly-sized holes introduced. To represent these structures compactly, we one-hot encode pairs
of atoms and vacancies as a 4-state “spin” (Figure 1b), on a 14×16 lattice, similar to the encoding
used in [8].
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Figure 1: a) Schematic representation of the regressive upscaling generative adversarial network
(RUGAN) used in this work. The generatorG takes a latent vector as input (concatenated with a
conditioning label channel) and, using translationally invariant convolutional layers, produces an
output encoding of a microstate. The criticC takes the proposed microstates from the generator
and microstates from a training set and learns to assign a score, differentiating whether the input
came fromG or the training set. b) The encoding used to represent the hexagonal lattice on a 2d
rectangular grid. c) Through the adversarial training procedure, the generator of the RUGAN is able
to learn relevant features from small scale training examples and extend that knowledge to large scale
microstate generation. Since the generator uses only translationally invariant convolutional layers,
increasing the size of the input latent vector consequently increases the spatial scale of the output
microstate. Importantly, large scale generated microstates respect periodic boundary conditions so
they can be easily used with standard electronic structure approaches common in materials simulation.
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