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Abstract

We present a tagging algorithm to identify displaced jets arising from the decays
of new long-lived particle (LLP) states in data recorded by the CMS detector
at the CERN LHC. The tagger is a multiclass classifier based on a deep neural
network. Information from individual particles and secondary vertices within jets
are refined through the use of convolutional networks, before being combined with
high-level engineered variables via a dense network. The LLP decay length, cτ0, is
used as an external parameter to the neural network, which allows for hypothesis
testing over several orders of magnitude in cτ0. We define a method based on truth
information from Monte Carlo simulation to reliably label jets originating from an
LLP decay for supervised training. The training is performed by streaming ROOT
trees containing O(100 M) jets directly into the TENSORFLOW queue and threading
system. This custom workflow allows a flexible selection of input features and
the asynchronous preprocessing of data, such as the resampling and shuffling of
batches on the CPU, in parallel to training on the GPU. Domain adaptation is
performed with control samples of pp collision data to ensure good agreement
between data and Monte Carlo simulation. The tagger provides a rejection factor
of 10 000 for jets from standard model processes while maintaining an LLP jet
tagging efficiency of 30–80% for LLPs with 1mm ≤ cτ0 ≤ 10m. We describe
the novel application of several machine learning techniques to LLP searches.

1 Introduction

Machine-learned algorithms are routinely deployed to perform event reconstruction, particle identifi-
cation, event classification, and other tasks [1] when analysing data samples of proton-proton (pp)
collisions recorded by experiments at the CERN LHC. A jet is a collimated spray of a few tens of
final-state particles that originate from the hadronization of a quark or gluon. Jets are copiously pro-
duced at the LHC. Machine learning techniques have been widely adopted to classify jets according
to the underlying flavour of the original parton [2]. Heavy b hadrons with lifetimes ofO(10−12 s) can
typically travel distances of approximately 1–10mm, depending on their momenta, before decaying.
Several algorithms have been developed to identify jets containing b hadrons (b jets) [3, 4, 5, 6].

Various extensions to the standard model (SM) [7, 8, 9] predict the existence of long-lived particles
(LLPs) with a proper lifetime τ0 that can be very different from those of known SM particle states.
Consequently, the production and decay of LLPs at the LHC could give rise to atypical experimental
signatures. A comprehensive review of current LHC searches for LLPs can be found in Ref. [10].
In this paper, a novel LLP jet tagger, inspired by the DEEPJET algorithm [5, 6], is presented and its
performance is benchmarked using simplified models of split supersymmetry (SUSY) [7] that yield a
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long-lived gluino. The gluino decays to a weakly interacting and massive neutralino, which is a dark
matter candidate, as well as jets that can be significantly displaced from the luminous region of the
proton beams. The decay length cτ0 of the gluino is a free parameter of the split SUSY model.

A detailed description of the CMS detector can be found in Ref. [11]. The central feature of the
CMS apparatus is a superconducting solenoid of 6m internal diameter, providing a magnetic field of
3.8T. Within the solenoid volume is a silicon pixel and strip tracker. Calorimeter systems are also
located within the solenoid and beyond. Muons are detected in gas-ionization chambers outside the
solenoid. Events of interest are selected using a two-tiered trigger system [12]. The particle-flow (PF)
algorithm [13] aims to reconstruct and identify each individual particle in an event, with an optimized
combination of information from the various elements of the CMS detector. Jets are clustered from
the PF particle candidates using the anti-kT algorithm [14].

2 The LLP jet algorithm

The training of the deep neural network (DNN) is performed with simulated events produced with
various Monte Carlo generator programs. Reliable labelling schemes are typically based on truth
information from Monte Carlo generators. A standard procedure known as “ghost” labelling [15]
determines the jet flavour by clustering not only the reconstructed final-state particles into jets, but
also the generator-level particles. The ghost labelling scheme is adopted by the LLP jet tagger for
jets from SM background processes. For the LLP jets, the presence of strong interactions from
QCD between the quark-antiquark pairs produced in the gluino decay prevents a reliable and unique
association between each reconstructed jet and its originating quark. An alternative scheme labels a
jet as originating from an LLP if the majority of its momentum stems from a vertex formed by the
daughter particles from a gluino decay.

The DNN architecture, shown in Figure 1, is based on the DEEPJET tagger [5, 6]. Up to ≈700 input
features are used, comprising the kinematical properties of: up to 25 charged and 25 neutral PF
particle candidates, ordered by impact parameter significance or transverse momentum, respectively;
up to four secondary vertices; and 14 global features associated with the jet. One-dimensional
convolutional layers are applied in four sequential layers, each with up to 64 nodes depending on
the type of input features, to extract the most useful latent features. After each layer, a LeakyReLU
activation function is used [16]. Dropout layers are interleaved throughout the DNN with a 10%
dropout rate [17]. After the final convolutional layer, comprising 4 or 8 nodes, the compressed feature
vectors are flattened and concatenated with the global jet features. The resulting feature vector is fed
into a series of dense layers for predicting the jet label using softmax as activation for the last layer
and categorical cross entropy as the loss function. The multiclass classifier predicts labels for LLP
jets and four SM background classes: b and c hadrons, light-flavour (uds) quarks, and gluons (g).

The cτ0 of the LLP is introduced as an external parameter at the dense network stage. The experi-
mental signature for a displaced jet depends strongly on cτ0: the DNN is able to exploit information
from all CMS detector systems if the decay occurs promptly, in the vicinity of the luminous region of
the beams, while information can be limited if the decay occurs in the outermost detector systems.
The parameterised approach allows for hypothesis testing with a single DNN. Values of cτ0 that span
six orders of magnitude are used.

Domain adaptation (DA) by backpropagation [19] is employed to obtain a similar jet classification
performance when applied to jets in control samples of pp collision data or simulated events. This
ensures the DNN is insensitive to differences in the input feature distributions for the two domains,
which may arise due to limitations in the simulation. To achieve this, the DNN is extended to predict
the jet domain (simulation or data). This is done by adding a branch after the first dense layer, the
feature layer. At the end of the domain prediction branch, the sigmoid activation function is used
while the loss function is binary cross entropy. A gradient reversal layer is inserted in the domain
branch directly after the feature layer. This special layer is only active during backpropagation and
reverses the gradients of the domain loss with respect to the weights in preceding layers. During the
DNN training, the combined loss is minimized.

Supervised training of the DNN is performed to predict the jet class. The ADAM optimizer [20]
is used to minimize the loss function with respect to the parameters. The DNN training relies on
simulated events of split SUSY models and various SM background processes. Approximately
20 million jets, are a few tens of epochs, are used to train the DNN. For the domain prediction,

2



Charged PF

candidates

(25 x 17)

Neutral PF

candidates

(25 x 6)

Secondary

vertices

(4 x 12)

Input features 1D convolutions

Predict jet

class 

(b, c, uds, 

 g, LLP)

Predict jet

domain

(simulation, 

 data)

6
4

 fi
lte

rs

3
2

 fi
lte

rs

3
2

 fi
lte

rs

8
 fi

lte
rs

3
2

 fi
lte

rs

1
6

 fi
lte

rs

1
6

 fi
lte

rs

4
 fi

lte
rs

3
2

 fi
lte

rs

1
6

 fi
lte

rs

1
6

 fi
lte

rs

8
 fi

lte
rs

F
la

tt
e

n

2
0

0
 n

o
d

e
s

G
ra

d
ie

n
t 

re
v

e
rs

a
l

1
0

0
 n

o
d

e
s

1
0

0
 n

o
d

e
s

5
0

 n
o

d
e

s

5
0

 n
o

d
e

s

Dense
Dense

Global (14)

LLP       (1)

Dense

Backward

propagation

Forward 

propagation

Feature

extraction

Label

prediction
Domain

prediction

Figure 1: An overview of the DNN architecture, which comprises convolutional and dense layers; the
number of filters and nodes, respectively, is indicated. Dropout layers and activation functions are not
shown. The input features are grouped by object type and (m× n) indicates the maximum number of
objects (m) and the number of features per object (n). The gradients of the class (Lclass) and domain
(Ldomain) losses with respect to the weights ~w, used during backpropagation, are shown. Figure taken
from Ref. [18].

1.2 million jets from control samples of pp collision data, and simulated samples of the expected SM
processes, are used. The learning rate is scheduled to decay, with an initial learning rate of 0.01.

The TENSORFLOW v1.6 [21] queue system is used to read and preprocess files for the DNN training.
The KERAS v2.1.5 [22] software package is used to implement the DNN architecture. At the
beginning of each epoch, a queue holding a randomized list of the input files is initialized. Files
names are dequeued asynchronously in multiple threads. For each thread, ROOT v6.18.00 [23] trees
contained in the files are read from disk to memory in batches using a TENSORFLOW operation
kernel, developed in the context of this paper. The resulting batches are resampled to achieve the same
distributions in pT and η for all jet classes and are enqueued asynchronously into a second queue,
which caches a list of tensors. The DNN training commences by dequeuing a randomized batch of
tensors and generating cτ0 values for all SM jets within the batch. The advantages of this system lay
in its flexibility to adapt to new input features or samples on-the-fly. The (pT, η) resampling and the
generation of cτ0 values for the SM jets proceeds asynchronously in multiple threads, managed by
TENSORFLOW, on the CPU while the network is being trained.

3 Performance and summary

The application of DA significantly improves the agreement between the distributions of LLP jet
class probability, P (LLP|cτ0), obtained from simulation and pp collision data. The maximum value
of P (LLP|cτ0) obtained from all selected jets in a given event is shown in Figure 2. This approach
allows a more robust treatment of related experimental systematic uncertainties in estimates of SM
backgrounds for a new-physics search.

The performance of the LLP jet tagger is studied with simulated events for three different benchmark
SUSY models with cτ0 = 1mm, as shown in Figure 3 (left). Given a mistag rate of 0.01% for
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Figure 2: Distributions of the maximum probability for the LLP jet class obtained from all selected
jets in a given event, Pmax(LLP|cτ0 = 1mm). The distributions from pp collision data (circular
marker) and simulation (histograms) are compared for a sample of µµ+jets events, using a DNN
trained without (left) and with (right) DA. The Jensen–Shannon divergence (JSD) [24] is reduced by
an order of magnitude following the application of DA. Figure taken from Ref. [18].
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Figure 3: (Left) ROC curves illustrating the tagger performance for a split (solid line), GMSB [8]
(dashed), and RPV [25] (dot-dashed) SUSY benchmark model. The thick and thin solid curves
indicate the performance using the DNN trained with and without DA, respectively. (Right) The LLP
jet tagging efficiency, using a working point that yields a mistag rate of 0.01% for the light-flavour jet
class, as a function of the model parameter value cτ0 for split SUSY models characterized by a large
and small difference in gluino (g̃) and neutralino (χ̃0

1) mass, as indicated in the legend. Figure taken
from Ref. [18].

light-flavour jets, equivalent to a background rejection factor of 10 000, efficiencies of 25–40% are
achieved for LLP jets. Figure 3 also demonstrates that training the DNN with pp collision data does
not significantly degrade the tagger classification performance.

The LLP jet tagging efficiency as a function of cτ0, obtained with a working point that yields a mistag
rate of 0.01% for the light-flavour jet class, is shown in Figure 3 (right) for two split SUSY scenarios
characterized by different mass spectra. Further studies demonstrate that the parameterization
according to cτ0 does not significantly impact the tagger performance with respect to the training of
multiple DNNs, one per cτ0 value.

Finally, the potential performance of the tagger is demonstrated through its application in a search for
split SUSY in final states containing jets and significant transverse missing momentum. The expected
performance offers excellent prospects for the discovery of new physics at the “lifetime frontier” of
collider-based experiments. Further details can be found in Ref. [18].
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