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Abstract
Strong gravitational lensing of astrophysical sources by foreground galaxies is a
powerful cosmological tool. While such lens systems are relatively rare in the
Universe, the number of detectable galaxy-scale strong lenses is expected to grow
dramatically with next-generation optical surveys, numbering in the hundreds of
thousands, out of tens of billions of candidate images. Automated and efficient
approaches will be necessary in order to find and analyze these strong lens systems.
To this end, we implement a novel, modular, end-to-end deep learning pipeline
for denoising, deblending, searching, and modeling galaxy-galaxy strong lenses
(GGSLs). To train and quantify the performance of our pipeline, we create a dataset
of 1 million synthetic strong lensing images using state-of-the-art simulations for
next-generation sky surveys. When these pretrained modules were used as a
pipeline for inference, we found that the classification (searching GGSL) accuracy
improved significantly—from 82% with the baseline to 90%, while the regression
(modeling GGSL) accuracy improved by 25% over the baseline.

1 Introduction
Gravitational lensing is the deflection of light rays as they traverse through the curved space caused

by the presence of mass. In the present era of precision cosmology, gravitational lensing has become
a powerful probe in many areas of astrophysics and cosmology, from stellar scale to cosmological
scale. Galaxy-galaxy strong lensing (GGSL) is a particular case of gravitational lensing in which the
background source and foreground lens are both galaxies and the lensing system is sufficient to distort
images of sources into arcs or even rings, depending on the relative angular position of the two objects.
Since the discovery of the first GGSL system in 1988 [13], many valuable scientific applications have
been realized, such as studying galaxy mass density profiles [32, 30, 19], detecting and inferring
galaxy substructure [35, 14, 2, 4], measuring cosmological parameters [6, 28, 33], investigating the
nature of high-redshift galaxies [3, 9, 29], and constraining the properties of self-interacting dark
matter candidates [31, 11, 18]

With the capabilities of the next-generation telescopes such as the Large Synoptic Survey Tele-
scope (LSST),1, Euclid2 the number of known GGSLs is predicted to increase by several orders of
magnitude [5]. The strong gravitational lens finding challenge project [24] proved the success of
applying machine learning approaches to detect GGSL systems in an automated manner. Lanusse et
al. [20], Morningstar et al. [25], Hezaveh et al. [15], Levasseur et al. [21] and Pearson et al. [27] have
shown the feasibility and reliability of utilizing deep learning to model strong lenses as a vastly more
efficient alternative to traditional parametric methods. Fast forward modeling for strong lensing image
reconstructions [26] may also be combined with inference pipelines such as Markov chain Monte
Carlo for lensing parameter estimation. However, the preprocessing of the original images—for
example, deblending and denoising with machine learning—is still in its infancy.

In this paper, we address this growing need for preparing automated analysis for GGSLs in two
ways. First, we create a dataset of 1 million simulated images (500K GGSLs and 500K non-GGSLs)
using a catalog of GGSLs and a state-of-the-art semi-analytic catalog of galaxies named cosmoDC2
into a strong lensing simulation program named PICS. To demonstrate the feasibility of the pipeline
for analyzing GGSLs, we use only 120K simulated images (60K GGSLs and 60K non-GGSLs) out
of the 1 million images. However, we use the 1 million images to quantify the performance of our
1 https://www.lsst.org/ 2 https://www.euclid-ec.org/
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Figure 1: Machine learning pipeline for analysis of galaxy-scale strong lensed systems.
pipeline in further studies. Second, we develop an end-to-end machine learning pipeline for automated
lens finding and characterization for GGSLs, which consists of four modules—denoising, deblending,
lens identification, and lens characterization. We adopt Deep Residual Networks (ResNet)-based fully
convolutional neural network architectures for denoising the original pixelized images and removing
the lens light in the deblending module. The lens identification and characterization modules perform
classification and regression, respectively, which are both built by using ResNet-50 architecture. We
demonstrate considerable improvement over lens finding and characterization without the pipeline,
and we discuss potential avenues for future improvement.

2 Data Preparation – Simulations
We created a realistic simulated dataset, including 500K GGSLs and 500K non-GGSLs by adopting

a catalog of strong lenses [5] (hereafter, Collett15) and a state-of-the-art extragalactic catalog [17].
Collett15 provides the mass models and simple light models of both lens and source galaxies; on
the other hand, cosmoDC2 provides more realistic light profiles of galaxies containing bulges and
disks. To create the inputs for our strong lensing simulation program named PICS [22] by connecting
the mass profiles from Collett15 and light profiles from cosmoDC2, we crossmatch the apparent
magnitudes, axis ratios, position angles, and redshifts of the galaxies from Collett15 and CosmoDC2.

The mass model of an individual lens galaxy is a singular-isothermal ellipsoid (SIE) as is adopted
in Collett15, which not only is analytically tractable but also has been found to be consistent
with models of individual lenses and lens statistics on the length scales relevant for strong lensing
[16, 10, 8]. Accordingly, the deflection maps can be given by the parameters of the positions,
velocity dispersion, axis ratio, position angle, and redshift of lens as well as redshifts of source
galaxies, i,e, {x1, x2, σv, ql, φl, zl, zs}. Since {x1, x2} can be fixed to {0, 0} by centering the
cutouts at the lens galaxies and since the lensing strength (i.e., Einstein radius) can be given by
Rein = 4π(σv/c)

2D(zl, zs)/D(zs), the parameter array can be simplified as {Rein, ql, φl}, where c
is the speed of light, D(zl, zs) and D(zs) are the angular diameter distance from the deflector to the
source and from the observer to the source, respectively.

We added noise and the point spread function (PSF) to make the images realistic using models of a
ground-based-like telescope from [5, 7]. The noise model is a mix between read noise, which is a
Gaussian-like noise, and shot noise, which is a Poisson-like noise that can be calculated according
to the flux in the pixelized images. The PSF model is also a Gaussian function with different full
width at half maximum (FWHM) of [g, r, i] bands. Examples are shown in Appendix A, Fig. 2. The
nonlensing systems are generated in the same way but with the strong lensing effects removed by
considering the deflection angles as zeros.

3 Methodology – Pipeline Training and Inference
Our proposed machine learning pipeline consists of four modules—denoising, source separation

(deblending), lens searching (classification), and Lens modeling (regression)—as shown in Fig. 1
Denoising is an image restoration approach in which the goal is to recover a clean image X

from a noisy observation Y . Traditionally, image denoising has been posed as an inverse problem,
where optimization approaches and special purpose regularizers (known as image priors) have been
used to achieve this [1]. Recently, deep-learning-based approaches have been being increasingly
adopted and are currently the state-of-the-art algorithms [23, 36] for image denoising. We adopt an
enhanced deep super-residual network (EDSR) architecture [23] that was proposed for a specific type
of image restoration known as super resolution. The residual network (ResNet [12]) incorporates
skip connections between residual blocks (which consist of convolution, batch normalization, and
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nonlinear activation layers) in a deep network, and has been shown to work well for a variety of
tasks [34]. The residual networks overcome the vanishing gradient problem by learning the function
mapping for the residual (with respect to inputs). EDSR proposes to get rid of the batch normalization
layers that are deemed unnecessary for the image-to-image tasks. Since the inputs and the outputs for
denoising have the same resolution, we removed the up-sampling layer from the EDSR architecture
which is composed of 16 residual blocks each containing two convolutional layers and an ReLU
nonlinear activation function. The convolution layers use 33 kernels and 256 feature channels. The
source separation (deblending) module decouples the lensed light and the source galaxy from the
observations. The module also utilizes the same modified EDSR architecture that was used for the
denoising module. The reason is that the source separation is also an image-to-image task that takes
the images with coupled source and foreground galaxies as input and outputs the corresponding
lensed or nonlensed source galaxy that is separated from the foreground lens. The classification
module is used to detect the lensing systems from the source separated images. In other words, each
of the observed image needs to be classified as to whether it is a lensed or a nonlensed system. We
utilize the ResNet-50 architecture to perform this classification. In this architecture, each residual
block is three layers deep and consists of convolution layers with channel size increasing from 64 to
2048 and the filter size being either 1× 1 or 3× 3. The parameter estimation (regression) module
takes the source-separated galaxy and predict its characteristics—Einstein radius, axis ratio, and
position angle. The parameter estimation also uses the ResNet-50 architecture that has been adopted
for the classification, but the last layer is replaced with a fully connected layer that is used to predict
the three continuous quantities. We also considered the case where we single model was used for
denoising and debleding together, but we found the discussed pipeline (Figure 1) to be the best and
hence do not discuss the former in detail, in the interest of space.

4 Results and Discussion
Each of the four modules—denoising, deblending, classification, and regression—was trained

individually using the corresponding parts of the simulation data. Once the model was trained,
the weights in these models were fixed and deployed as part of the inference pipeline, where the
predictions from each module were fed into the subsequent module with the end goal of characterizing
the lensed galaxies. The results for training the modules will be discussed first, followed by inference.

4.1 Training
The denoising ESDR model was trained for 12, 50 epochs using 5, 000 images (and tested on 200),

where the inputs were noisy and blended galaxy images (Noisy-Sim) and the ground truth was the
corresponding noiseless blended images (Noiseless-Sim) from the simulation. We used the peak
signal-to-noise ratio (PSNR) to evaluate the denoising accuracy.

The accuracy metrics corresponding on the test data using the trained denoising model are shown in
Table 1a in Appendix A. First, the difference between Noisy-Sim and Noiseless-Sim is shown to
demonstrate the effect of the noise. The mean value for PSNR over all the test data is 22.56, indicating
that in fact the noise has a significant effect on the image. Then, the ability of the denoising machine
learning model to predict the denoised images from the noisy images is measured by comparing
the model prediction (Noiseless-ML) with the corresponding ground truth (Noiseless-Sim). The
metric value of 47.55 for PSNR indicates very good noise removal by the trained model.

To measure the accuracy of the deblending module, we first compared the Noiseless-Sim with
noiseless and deblended simulation data (Deblended-Sim) to characterise the difference between
the input and the corresponding ground truth that the prediction seeks to match (Table 1a). The mean
value over all the test data for PSNR is 14.47, which indicates a significant difference between these
image pairs. Then, the output from the deblending machine learning model (Deblended-ML) was
compared with the ground truth (Deblended-Sim) on the test data to characterize the predictive
accuracy. The PSNR value of 35.03 indicates a good recovery of the source galaxy by deblending.

The classification module was trained over 108,000 images with a batch size of 256, 15 epochs,
and a learning rate that decays by half every two epochs starting with a value of 1e−4 with the Adam
optimizer. The mean classification accuracy (over two classes) was used to measure the accuracy
of the classification model (Table 1b). As a baseline we trained a classification model to predict the
label directly from the noisy blended simulation images (Noisy-Sim) and evaluated the metrics on
the same 12, 000 corresponding test data images. The mean accuracy was found to be 0.82, while
the classification model trained with Deblended-Sim gave a mean accuracy of 0.99, which is a
significant improvement overthe baseline.

For the parameter estimation (regression) module, we used the same ResNet-50 architecture but
with the last layer being a fully connected one to predict the three continuous parameters. Only
the lensed images in the deblended simulation data Deblended-Sim-Len were used to train the
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regression model. Hence, a total of 54, 000 were used for training and 6, 000 for testing. The same
batch size and learning rate schedule used for classification were employed for regression as well,
while the number of epochs was increased to 30. The regression accuracy was measured by using the
mean absolute error (MAE) in the normalized ([0,1] w.r.t the maximum and minimum of training
data) coordinates, as shown in Table 1b; the plots comparing the observed and predicted are shown in
Fig. 3. The regression accuracy for training is 0.01 for MAE, which indicates a very good agreement
with the ground truth. For the test data, the corresponding MAE is 0.03, while the baseline MAE is
0.08.

4.2 Inference
With the inference pipeline, we looked at an application scenario where all four modules were

used in unison to predict the galaxy parameters from the noisy observations. The input to the
denoising module was the full 12000 Noisy-Sim data, and we evaluated the denoising performance
of the inference data using a procedure similar to that used for the test data, where the similarity
between Noisy-Sim data and the Noiseless-Sim was calculated with the three metrics. We found
the results to be similar to those obtained on the test data, giving us confidence that there wss no
significant change in the noise distribution. Next, we compared the performance of the predictions of
the deblending model (Noiseless-ML) with the ground truth (Noiseless-Sim) and again found
the metrics to be close to those obtained for test data, thus validating the predictive capability and
generalizability of this denoising model beyond the data it’s trained on. For the deblending process, the
denoised model predictions (Noiseless-ML) were taken as input and the corresponding deblended
outputs were obtained (Deblended-ML-ML) as output. The accuracy was evaluated with respect
to the ground truth deblended images Deblended-Sim for Noiseless-ML and Deblended-ML-ML
over all the 120000 images (Table 1c). We found the PSNR for the latter to be 26.87, which is lower
than that for the test data (in the training phase) but is significantly better than the baseline of 13.59.

For the classification inference, we calculated the mean accuracy for the deblending scenario and
found that the accuracy is lower than for the test data (in the training phase), with a mean accuracy of
.90 compared with 0.99. However, this accuracy is much higher than the baseline case accuracy of
0.82.

For the regression inference, we calculated the MAE for the deblending scenario and found that
their regression accuracy (Table 1d) is slightly lower (MAE of 0.06) than the accuracies obtained on
the test data but is an improvement over the baseline of 0.08.

Limitations of the Denoising/Deblending Modules: Although we obtained good training and test
accuracy for all the training modules and significant improvement in the lens finding (classification)
over the baseline for the inference pipeline, the lens characterization accuracy improvement in
inference is only marginal. We attribute this to two factors: (1) sensitivity of the deblending
module to the denoising input, where we found that even though the PSNR is close to ideal, the
minor differences with the ground truth (< 0.01% cause additional features in the deblended image
(Fig. 2(e) in Appendix B) for some cases; and (2) the processes of denoising and deblending, which
work well for extracting bright lensed arcs but can erase the faint counter-images of the primary
lensed images because of the high contrasts between the images of the lenses and the counterimage.
These factors may bias the ellipticity and inner density slopes of lens galaxies. We will try to improve
these issues by involving larger training sets and more complex models in the follow-up work.

5 Conclusions
Combining high-fidelity simulation data and a systematic machine learning pipeline is crucial for

developing fast and accurate GSSL analysis techniques for future cosmological surveys. To this end,
we proposed a dataset of 1 million synthetic images (500k GGSLs and 500k non-GGSLs), which
is the largest simulation for GGSL ever made, and we developed an end-to-end machine learning
pipeline with separate modules for denoising, deblending, lens searching, and lens modeling that is
trained on this data. We demonstrate good denoising and deblending performance on both the training
and inference (compared with the ground truth) and, consequently, a significant improvement in
classification and regression over the baseline (working directly with the noisy blended data). We also
identify a few limitations of the simulation data, which lead to underestimated contamination from
substructures in the context of both mass and light profiles of galaxies and in the denoising/deblending
model, which either misses counterimages or introduces additional artifacts. We plan to address
these issues by scaling up to the full million image dataset, training the denoising and deblending
model together, and employing a hyperparameter search to improve the classification and regression
accuracies. In addition, we will explore uncertainty quantification for the lens modeling output
through probabilistic regression. Eventually, the pipeline intended to be used for real-time lens
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finding and characterization with data from next-generation large-scale sky surveys such as Euclid,
LSST, and WFIRST.
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A Supplemental Tables and Figures

Table 1: Accuracy metrics for training and inference with the machine learning pipeline.

(a) Training – PSNR met-
rics for denoising and de-
blending on 200 images

Training PSNR
Denoising
Noisy-Sim 22.56

Noiseless-ML 47.91
Deblending

Noiseless-Sim 14.47
Deblended-ML 35.03

(b) Training – classifica-
tion and regression metrics
on 12, 000 images

Training Mean acc
Classification
Noisy-Sim 0.82

Noiseless-Sim 0.99

MAE
Regression

Noisy-blended-Sim 0.08
Noiseless-Sim-Len 0.03

(c) Inference - PSNR met-
rics for Denoising and De-
blending on 120, 000 im-
ages

Inference PSNR
Denoising
Noisy-Sim 22.71

Noiseless-ML 47.15
Deblending

Noiseless-ML 13.59
Deblended-ML-ML 26.87

(d) Inference – classifica-
tion and regression metrics
on 12, 000 images

Inference Mean acc
Classification

Deblended-ML-ML 0.90

MAE
Regression

Deblended-ML-ML 0.06

B Limitations of the Simulation Model
We adopt SIE as the mass model of the lenses, which is insufficient for studying the influence of

the subtle structures of the lens galaxies on the performance of analyzing strong lenses using our
pipeline. To make the simulation more realistic, we plan to adopt the particle data from cosmological
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(a) (b) (c) (d) (e) (f)

Figure 2: First row: Noisy-Sim data from the simulation. Second row: Noiseless-ML output
from the denoising module at inference. Third row: Deblended-ML-ML output from the deblending
model with the denoised model input at inference. Fourth row:Deblended-Sim-ML output from the
deblending model with the denoised simulation input (Noiseless-Sim) at inference.

(a) Training

(b) Testing

Figure 3: Comparison of the observed (Noiseless-Sim) and predicted (Noiseless-ML) data
corresponding to training and testing data for lens characterization (regression) during the training
phase.
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N-body simulations and stellar mass distributions from semi-analytical models for presenting the
mass distribution of lens galaxies. Furthermore, for image simulation, we involve the images of
sources and lenses only; but in real observations, images of galaxies on the line of sight are also
considerable, and the cosmoDC2 light cone is helpful to include these effects. The study is focused on
ground-based-like telescopes such as LSST, so the light profiles with bulges and disks are sufficient
because of the coarse pixelization and large PSF. However, for the case of space-based-like telescopes
such as Euclid and WFIRST, the light profile lacks detailed structures of galaxies such as spirals and
clumps. We are attempting to attach substructures onto the galaxies by using GANs in a parallel
project. Another issue is the overkill problem in the processes of denoising and deblending; that is,
faint counterimages of the primary lensed images can be erased on some level because of the high
contrasts between the images of the lenses and the counterimages. We will try to avoid potential
biases because of this problem by using more advanced algorithms in our follow-up work.
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fice of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclu-
sive, irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on be-
half of the Government. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan.
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