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Abstract

Hybrid quantum–classical approaches provide an immediate platform for exploring
a possible quantum advantage for machine learning applications. One example of
such a hybrid approach is “quantum kitchen sinks”, which builds upon the classical
algorithm known as “random kitchen sinks” to leverage a gate model quantum
computer for machine learning applications. We propose an alternative approach
called “adiabatic quantum kitchen sinks”, which employs an adiabatic quantum
device to transform data features into new features in a non-linear manner, which
can then be used by classical machine learning algorithms. We present the effec-
tiveness of our approach in performing binary classification on both synthetic and
real-world datasets. In terms of classification accuracy, our approach significantly
outperforms classical linear algorithms on the studied binary classification tasks
and can potentially be implemented on a current adiabatic quantum device to solve
practical problems.

1 Introduction

Quantum algorithms [1] are theoretically proven to solve certain computational problems faster than
the best known classical algorithms [2, 3]. Despite the impressive progress that has been made toward
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building a universal quantum computer in the quest for quantum supremacy [4, 5], it remains an
elusive goal due to the negative effects of noise present in quantum systems. Meanwhile, noisy,
intermediate-scale quantum (NISQ) [6] devices readily provide a platform for demonstrating a
potential quantum advantage for specific applications such as machine learning [7].

The rapid growth in the amount of available data requires increasingly faster computing devices
to learn from big data, and quantum computers are a potential candidate. Several recent studies
have shown the potential of NISQ technologies in machine learning [8–12]. Recently, an algorithm
called “quantum kitchen sinks” (QKS) was proposed [13], which builds upon the idea of classical
“random kitchen sinks” (RKS) [14–16]. The idea behind RKS is to map the input data samples into a
randomized feature space, such that the overlap (the inner product) of the pair of data samples in the
randomized space approximates a desired kernel [17] (a similarity measure between a pair of data
samples). A linear machine learning algorithm can then act on the randomized samples generated
from the original input data to execute the learning process. Despite its simplicity, the performance of
RKS is comparable to state-of-the-art machine learning algorithms [18, 19].

We propose an alternative approach to QKS [14–16] we call “adiabatic quantum kitchen sinks”
(AQKS). Our algorithm uses an adiabatic quantum device as an explicit feature map to transform the
features of each data sample into new features called quantum randomized features. Given a data
sample x, we encode its input data features into the parameters of a quantum Hamiltonian. Evolving
the quantum system and performing a measurement at the end of the evolution gives us a new data
sample that represents x in the feature spaceH. The kernel that results from such a transformation is
non-linear due to the effect of the measurement process on the quantum system. Our simulations
show that such a non-linear explicit feature map has a positive impact on learning kernel machines
for classification problems.

We consider the following scenario to show the effectiveness of AQKS on a learning task. Given a
dataset D ⊂ Rp, we first use AQKS to construct a new dataset D′ ⊂ H. We then train two separate
support vector machines with a linear kernel (LSVM), one on the original dataset D and the other on
the transformed dataset D′. We call the first model that is trained on D an LSVM, and the second
trained on D′ an AQKS+LSVM model. Keeping the learning algorithm in both models the same
(i.e., an LSVM), we compare the performance (i.e., the classification accuracy) of the two models on
two example datasets.

To demonstrate the power of AQKS for machine learning, we evaluate the performance of our
approach on a synthetic dataset as well as on the Modified National Institute of Standards and
Technology (MNIST) dataset. Our simulations show that AQKS+LSVM significantly outperforms
(in terms of the classification accuracy) the LSVM for classification tasks on the studied datasets.
Specifically, our approach increases the classification accuracy on the synthetic dataset from 50% to
99.4%. On the MNIST dataset, our method reduces the classification error from 4.4% to 1.6%. It is
important to mention that the AQKS algorithm can readily be applied to practical datasets with any
number of features using a current quantum annealer.

2 Adiabatic Quantum Kitchen Sinks

To provide a more formal description of the AQKS algorithm, let us consider dataset D = {X ,Y},
where each of the X (the input data) and Y (the target data) is a set comprising n data samples. We
denote each element of X by xi (i ∈ {1, 2, . . . , n}), which is a p-dimensional vector defined over
Rp. The first step in transforming the given dataset from the original space (i.e., Rp) to a new space
(i.e., H) is “encoding”. To this end, we define AAA and b, where AAA is a q × p random matrix with
a classical probability distribution function P (AAA) and b is a q-dimensional vector with a classical
probability distribution function P (b). Here, q refers to the number of qubits. We encode xi into ji
by applying the linear transformation

ji = AAAxi + b. (1)

The process of encoding xi with different realizations of AAA and b is repeated multiple times. Each
repetition is called an “episode” and e is used to denote the episode number. The corresponding
encoded q-dimensional vector for an episode e is represented by jei , which is then mapped onto the
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coefficients of the local σz terms of a q-body transverse-field Hamiltonian, HHH(t)exi
, such that

HHH(t)exi
= a(t)
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In (2), jeu is the u-th element of the vector jei and σα (α ∈ {x, y, z}) denotes a Pauli operator. Each
hlm is a real number derived from a function of jeu (in our experiments, we consider hel,m = jel j

e
m)

that could result in quantum entanglement, being the coefficient for the σzσz interaction.

In order to generate a transformed data sample from each xi, we evolve (2) on an adiabatic quantum
device from an initial time ti = 0 to a final time tf = T and then perform a projective measurement
along the z-axis at the end of the evolution. Stacking the outcomes of the measurements gener-
ated through a total of E episodes for xi and normalizing the resultant vector by 1

E provides a
(q × E)-dimensional vector uxi , which represents the respective xi in the feature space. We then
train a linear machine learning model using this transformed dataset.

3 Simulation Setting

Here, we discuss the simulation settings used to evaluate the improved classification performance
achieved using our algorithm, AQKS. Note that, throughout our experiments, we Trotterize [20] in
order to simulate the quantum system’s evolution using a classical computing device.

3.1 Performance Measure

To investigate the performance of AQKS, we first create a baseline for the underlying learning task by
solving the classification problem using an LSVM without quantum randomization (i.e., with the data
residing in its original space). We then compare the performance of LSVM applied on the transformed
dataset, called AQKS+LSVM, against the mentioned baseline. This provides a systematic way to
fairly assess the power of an adiabatic quantum device as a non-linear feature map.

3.2 Datasets

We evaluate the performance of AQKS+LSVM on two datasets. The first is a two-dimensional
synthetic dataset, consisting of two classes, and generated using the sklearn.datasets Python
module (see Fig. 1a). This dataset is linearly inseparable in the two-dimensional space, and thus is
a good candidate for studying non-linear effect of quantum randomization. The second dataset is
the MNIST dataset, a practical dataset widely used for testing and benchmarking machine learning

a) b)

Figure 1: a) Representation of the “circles” dataset consisted of two classes of yellow and purple
circles which consist of 1000 data samples in total. b) Results of the classification accuracy of
AQKS+LSVM with a two-qubit quantum Hamiltonian for the synthetic circles dataset. Here, σd and
E refer to the variance of the normal distribution and the total number of episodes for each setting,
respectively. The highest average accuracy that AQKS attains over 10 trials for each setting is 99.4%.
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algorithms. The dataset contains a large ensemble of handwritten digits, where each data sample is
a 28-by-28-pixel greyscale image. Each image can be represented by a 784-dimensional vector x
whose elements represent the shade, in grey, of the pixels, and ranges from 0 to 255. We evaluate the
performance of the AQKS+LSVM method in classifying the handwritten digits “3” and “5”. The
dataset contains 7141 and 6313 instances of the digits 3 and 5, respectively.

4 Results and Discussion

Here, we report the results of the classification performance of AQKS+LSVM on both the synthetic
dataset and the MNIST dataset.

4.1 The Synthetic Dataset

For the synthetic circles dataset (see Fig. 1a), Fig. 1b represents the results of the classification
performance of AQKS+LSVM using a two-qubit quantum system. The annealing time and duration
of the Trotterization time slots are T = 5 and τ = 1, respectively. Elements of b are chosen randomly
according to a uniform distribution over [0, 2π). We use a zero-mean Gaussian distribution with a
standard deviation of σd for generating the elements of AAA.

We have deliberately selected a pattern where the two classes of data samples are not linearly
separable. Specifically, for the two classes of concentric circles in Fig. 1a, the performance of a linear
classifier in two dimensions (i.e., a straight line) will not exceed 50%.

For the best set of E and σd parameters, transforming the input features into a randomized feature
space using an adiabatic quantum device improves the performance considerably, and AQKS+LSVM
achieves an accuracy of 99.4% averaged over 10 classification trials. This provides a clear indication
that the corresponding quantum explicit feature map has plausible non-linear properties. As both the
encoding (1) and the learning algorithm (LSVM) are linear, it becomes apparent that the observed
non-linearity of the quantum kernel is caused by the quantum feature map (i.e., the operation we
perform using the adiabatic quantum device). As shown in Fig. 1b, the accuracy improves as the
number of episodes is increased. In addition, we see that the choice of σd plays a significant role in
the performance of the classification.

4.2 The MNIST Dataset

For the MNIST dataset classification, we first perform a hyperparameter tuning on the standard
deviation σd of the zero-mean Gaussian probability distribution AAA. This is done by fixing the number
of qubits to two, the number of episodes to 10,000, and b to be a zero vector. We run the classification
exercise for 3000 images out of the total 13,454 data samples, each time using a different value for
σd. Using 75% of the chosen 3000 images for training and the rest for testing, a value of σd = 0.01
yields the best performance. Similarly, a value of σd = 0.01 gives the best result for a four-qubit
quantum system. After finding the optimal value for σ, we re-run AQKS+LSVM on all 13,454
samples of data, with 75% used for training and the rest for testing. The results reported below are for
E = 20, 000 and 10 classification trials. Full connectivity between the qubits is assumed, meaning
that each qubit interacts with all other qubits in the system. Using SVMs with linear and RBF kernels,
the accuracy of the models trained on this dataset is 95.6% and 99.0%, respectively. Compared to

Two-qubit system Four-qubit system
Method LSVM AQKS+LSVM AQKS+LSVM
µc 0.951 0.977 0.984
σc 0.002 0.002 0.002

Table 1: Classification accuracy of an LSVM on the randomized features generated by AQKS using
a two-qubit and a four-qubit quantum Hamiltonian. The values in the LSVM column show the
performance of the LSVM over the original dataset without any randomization on the input features.
Here, µc (the mean) and σc (the standard deviation) are taken over 10 trials, for different numbers of
qubits.
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the LSVM, the four-qubit AQKS+LSVM method results in greater accuracy: 98.4%. As shown in
Table 1, quantum randomization improves the classification accuracy of the LSVM. The accuracy
improves further as the number of qubits is increased. For instance, increasing the number of qubits
from two to four reduces the classification error from 2.3% to 1.6%. This is another indication that
the quantum kernel provides a non-linear property that boosts the performance of the classifier over
the performance attained using a linear kernel.

One could still argue that AQKS+LSVM does not outperform or or perform as well as an SVM
algorithm with a non-linear kernel (e.g., RBF). We wish to point out that performing extensive
hyperparameter tuning for the parameters of our proposed method requires access to a quantum
annealer. More specifically, whereas the simulation of quantum systems that have a few dozen qubits
is feasible on a classical computing device, a total of E such simulations would be required for each
data sample, making our approach computationally expensive to simulate classically.

5 Conclusion

In this work, we have introduced a hybrid quantum–classical machine learning algorithm that employs
an adiabatic quantum device (a quantum annealer) as an explicit feature map to generate randomized
features out of input data features. Our approach, called “adiabatic quantum kitchen sinks”, combined
with an LVSM, outperforms a linear learning method for both the synthetic dataset and the MNIST
dataset. Even employing the limited-in-size quantum annealers of today [21], our approach can be
applied to practical datasets.

In terms of future research, it is worth pointing out that throughout the experiments we performed in
our study, we used the same probability distribution functions to generate all the elements of AAA and b.
We expect that using different types of probability distribution functions for each individual qubit can
introduce more-complex forms of non-linearity into the quantum kernel [22, 23].

One of the advantage of AQKS is that, unlike [8, 24, 25], it does not require constructing a quantum
system multiple times in a loop with a classical device. We can, however, modify AQKS to turn it
into an adaptive algorithm where we update the parameters of AQKS with respect to the performance
of the model, in an iterative fashion. To do so, conside (2), and assume that we encode data into the
local field parameters (j) and that each interacting term (himn) represents the adaptive parameters
which we intend to update iteratively. Then, for a given machine learning task on a given dataset, we
use AQKS to train a model with a generalization error of F i. Having access to F i and each himn, we
use a gradient-free optimization algorithm [26] to update each himn (i.e., each adaptive parameter)
while reducing the error of the classification accuracy of the model. This iterative process continues
until an F i with a desired threshold has been met or the maximum number of iterations has been
reached.
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