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Abstract

Accurate prediction of intermolecular interaction energies is a fundamental chal-
lenge in chemistry despite their pervasiveness in describing fundamental physical
phenomena in pharmacology, biology, and materials science. Symmetry adapted
perturbation theory (SAPT) provides rigorous quantum mechanical means for
computing such quantities directly and accurately, but for a prohibitive computa-
tional cost in all but the smallest systems. We report accurate, low-cost supervised
learning approaches for the prediction of interaction energies. Our work features
data augmentation, specialized atomic descriptors, and the physically interpretable
energy decomposition from SAPT as learning targets to address the idiosyncrasies
of the intermolecular problem.
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1 Introduction

1.1 Intermolecular interaction energy

Numerous phenomena in biology, pharmacology, and materials science can be explained by non-
covalent interactions (NCIs). [7, 9, 14] High accuracy quantification of NCIs can be achieved using
the conventional tools of quantum chemistry, including but not limited to coupled-cluster theory
and perturbation theory.[2, 1] Symmetry adapted perturbation theory (SAPT)[15, 8] computes the
interaction energy directly as a perturbation to the molecular systems with very high accuracy. More-
over, SAPT decomposes naturally into several energy contributions that can be used to characterize
the nature of an interaction. For example, the simplest truncation of the SAPT expansion is dubbed
SAPT0 and can be written as[10]

ESAPT0 = Eelst + Eexch + Eind + Edisp (1)

The terms of this truncation represent electrostatics, exchange, induction (or polarization), and Lon-
don dispersion, respectively. Each term in this expression reflects an interpretable and physically
meaningful contribution to the interaction energy[11] and are computed directly from quantum
mechanics. Wavefunction methods like SAPT, while very accurately approximating the true interac-
tion energy, become prohibitively expensive for large systems. This necessitates accurate low-cost
approximations to address many interesting chemical problems.

1.2 Behler-Parrinello neural networks

In recent years, Behler-Parrinello neural networks (BPNNs)[3, 4] have become a quintessential tool for
building models to describe potential energy and other properties in molecules in a maximally flexible
way.[12] The BPNN relies on the separability of a molecular property into atomic contributions,
where a feed-forward neural network infers only the atomic contributions to the total molecular
property. Usually atomic contributions are combined by a simple sum, though more complicated
schemes have been explored.[6]

Typically, BPNNs use a different neural network for each “atom-type,” that is, carbon, hydrogen,
oxygen, etc. Each atom in a system is represented by an atomic environment vector, often so-called
“symmetry functions” which encode the local environment of the atom in terms of radial and angular
proximity with other atoms in the system. This architecture has the advantage of growing linearly in
number of atom-types treated and learning transferable characteristics between atoms of the same
identity. BPNNs also boast linear inference-time scaling in number of atoms in the system due to the
atom-in-molecule scheme.[16]

2 Methods

In order to isolate factors affecting machine learned prediction of interaction energies, we study
a model dataset consisting of 9000 configurations of NMe-acetamide / Aniline dimer. Interaction
energy labels are obtained at the SAPT0 / jun-cc-pVDZ level of theory. Tests are performed on
47 crystallographic examples of the same dimer. We anticipate the findings from this model case
will represent useful practices for multi-dimer machine learned potentials and potentials trained on
reference data produced at higher levels of theory.

2.1 Data augmentation

Data that describes molecular properties is simply a collection of Cartesian coordinates and the
identity of the nucleus at each coordinate. We study a representative constrained intermolecular
version of this problem – training a neural network to the SAPT0 interaction energy of a single dimer
system in a wide variety of conformations, rather than a diverse set of dimers.

In this work, we highlight an idiosyncrasy of data curation for the interaction energy case. One
might be tempted to construct a training set for a single potential by scanning along many distances
and Euler angles between two internally static monomers. This has the effect of capturing the most
important features in the interaction energy surface like range-dependent attractions and anisotropy
in energy during rotations of one monomer with respect to the other. Fixing the monomers to be
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Figure 1: Four sequentially improved BPNN models for prediction of 47 crystallographic NMe-
acetamide / Aniline dimer SAPT0 total interaction energies. All neural networks are trained on 9000
configurations. Shown is the SAPT0 target total interaction energy compared to the neural network-
predicted total interaction energy. Dark orange corresponds to 0.5 kcal mol−1 from the target energy
and light orange corresponds to within 1 kcal mol−1. (A) was trained on only artificially generated
configurations from Euler angles and distances with internally static monomers and represented with
traditional wACSFs. (B) was trained with all configurations from A, but with all atomic Cartesian
coordinates augmented by random perturbation between -0.1 and 0.1 Å. New energy labels are not
provided, and all configurations use their mother energy label, consisting of the total interaction
energy and its four SAPT0 components, weighted 60% and each 10%, respectively. (C) was trained
on all of the configurations from B but with correct SAPT0 labels provided. (D) was trained with
correctly labeled perturbed coordinates, but with the input descriptor represented as specialized
intermolecular wACSFs (IMwACSFs).

internally static appears sensible because intuitively, the interaction energy varies little with respect
to the possible small changes within the monomer. A neural network, however, lacks this intuition;
symmetry function descriptors are inherently ordered by distance and some will change negligibly
in a training set of internally static monomers. This effect causes any test sample with different
internal monomer coordinates to have before-unseen descriptor values. The network is provided
no information on how to adjust its prediction with respect to small internal changes, so they vary
drastically and erroneously. We probe this effect in the intermolecular case for one dimer by training
three data sampling techniques: one using only Euler angles and distances with internally static
monomers, one using the same Euler angles and distances with randomly added Cartesian noise to
every atomic coordinate (between -0.1 and 0.1 Å) without regenerating the correct SAPT0 energy,
and lastly the same noisy Cartesian coordinates paired with the correct SAPT0 energies. Figure 1
parts A, B, and C illustrate this effect, notably drastically improved accuracy when noise is added
to the Cartesian coordinates even when proper SAPT0 labels are not provided. This is a unique
effect to the molecular case since both inter- and intramolecular degrees of freedom must be varied
to capture even very weak dependencies on position. Molecular dynamics has been used to sample
out-of-equilibrium configurations of molecular structures, which would adequately explore both
degrees of freedom for interaction energies, but also may require ad hoc restrictions for keeping
dimers bound in meaningful contact.[13]
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2.2 Intermolecular Atomic Descriptors

Traditional Behler-Parrinello atom-centered symmetry functions (ACSFs)[4] and their descendants
like the weighted atom-centered symmetry functions (wACSFs) of Marquetand and coworkers[5]
provide reliable descriptions of local atomic environments while obeying the symmetries of a molec-
ular system, such as translational and rotational invariances. The BPNN framework in conjunction
with symmetry functions also accounts for invariance with respect to permutation of the same type of
atom.

wACSFs have the form

Gradi =

N∑
j 6=i

Zje
−η(rij−µ)2fc(rij) (2)

Gangi = 21−ζ
N∑

j,k 6=i

ZjZk(1 + λcosθijk)ζe−η(r
2
ij+r

2
jk+r

2
ik) × fc(rij)fc(rjk)fc(rik) , (3)

Each radial function Gradi for atom i has a unique η and µ hyperparameter pair, which correspond to
Gaussian widths and shifts, resepectively, upon which other system atoms are evaluated. Similarly,
angular functions Gangi depend on hyperparameters ζ, λ, and µ. All ACSF varieties assume some
chemical locality, encoded in the cutoff function fc(rij) which decays to 0 at a chosen cutoff radius.

Unlike the molecular problem, however, the intermolecular problem depends on the choice of which
atoms belong to which molecule. Since there is no notion of molecule choice for molecular properties,
there is a false symmetry in molecular descriptors like wACSFs that do not reflect this dependence. A
false symmetry in the descriptor space is more harmful to model construction than a false asymmetry,
since the latter can be rectified with sufficient data in a flexible model. As such, traditional molecular
descriptors must be modified to address modeling intermolecular properties directly. A natural way
to do this is to separate contributions to symmetry functions into same-molecule contributions and
other-molecule contributions. Our test of this method on the NMA / Aniline model system is shown
in Figure 1D and display notable generalization improvements.

2.3 Multi-target prediction

We leverage the shared information between SAPT components to recover both the physically
meaningful component energies and the total interaction. We choose to train the neural networks to
learn the collected electrostatics, exchange, induction, and dispersion energies. Each atom-type neural
network has a densely connected final hidden layer to these energies, which are then constrained to
sum to the total interaction energy. We choose our loss function to take the form

L = (1− γ) MSE(∆Eint) + γ
∑
i∈C

MSE(Ei) (4)

with C = {electrostatics, exchange, induction, dispersion}. The parameter γ can be varied between
0 and 1, allowing for the loss function to include different proportions of component error and total
interaction energy error. γ = 0 corresponds to the single-target training of total interaction energy
and γ = 1 corresponds to equally weighting the fit to all component energies.

In Figure 2, we show that in our test system, scanning along the γ coordinate yields superior results
to both γ = 1 and 0 by leveraging learning target relationships and encouraging systematic error
cancellation of component predictions. Large γ do not benefit from cancellation of error, but low γ
fails to recover the SAPT0 component energies. γ = 0.6 appears to recover very accurate component
energies with improved total interaction energy accuracy compared to γ = 0.0.

3 Conclusions

We have introduced a framework and set of best practices for generating models for prediction of
intermolecular interaction energies. These factors are general to any choice of statistical model
that concedes to the atom-in-molecule prescription of BPNNs. These models, relying on only
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Figure 2: The validation errors of intermolecular BPNNs trained on 9000 configurations of N-Me-
acetamide / Aniline dimer computed at the SAPT0 / jun-cc-pVDZ level of theory. γ is varied from
0.0 to 1.0, varying the loss function according to Eq. 4.

mathematically simple descriptors and neural network forward-passes can be evaluated in 130 µs
atom−1, orders of magnitude faster than the underlying SAPT which may take minutes or hours for
dimers of interest.

Special care must be taken in data curation for NCIs where two sets of coordinates may be varied –
the intramolecular coordinates, vital for capturing model behavior near geometric equilibria, and the
intermolecular coordinates, capturing the behavior of NCIs as molecular positions vary with respect
to one another. In the event full quantum mechanical reference data cannot be computed for new
coordinates, data augmentation without explicitly relabeling along low-slope coordinates may be
useful for more general models at no increased inference-time cost.

Intermolecular properties depend on monomer choice, so this dependence must be encoded into
the feature space for use in statistical models. We provide one way of encoding this dependence,
dubbed “intermolecular symmetry functions,” the underlying concept of which is extensible to other
descriptors and architectures.

We leverage the relationship between SAPT components to multi-target predict both components and
total interaction energy to high accuracy. This practice is useful anywhere a simple functional form
synthesizes a desired property, but is especially valuable with SAPT, where component energies are
independently physically meaningful in characterizing NCIs and simply sum to the total interaction
energy.

In concert, these practices enable models in which diverse interacting systems can be accurately char-
acterized with drastically reduced computational complexity compared to the quantum mechanical
reference.
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