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Abstract

Being able to effectively design biological molecules like DNA and proteins to
desired specifications would have a transformative effect on science. Currently,
the most popular design method in biomolecular engineering is directed evolution
[1, Nobel Prize 2018], which explores sequence space by making small mutations
to existing sequences. Alternatively, Bayesian optimization (BO) is an attractive
framework for model-based black-box optimization, and has recently been suc-
cessful in molecular design [26, 19, 10, 9, 7, 14, 17]. However, most large-scale
BO efforts within the ML community have focused on hyper-parameter tuning
for ML; such methods often do not translate to biological sequence design, where
the search space is over a discrete alphabet, wet-lab experiments are run with
considerable parallelism (many sequences measured simultaneously), experiments
are sufficiently time consuming and expensive that only few rounds of experiments
are feasible, and we must account for the safety of patients that will be treated with
the sequence. This paper discusses the particularities of batched BO within this
unique context, and investigates the design choices required for robust and scalable
design.

1 Introduction: Protein and DNA Design as an ML Problem
This section provides a brief background on Bayesian optimization, with a focus on details that are
specific to biomolecular engineering. Let f be a black-box function over a high-dimensional discrete
space, which will be evaluated using batches of B > 1 sequences. Write Dt = {x, y = f(x)} for
the data collected after i rounds of experiments. In intermediate rounds, we select B sequences
to evaluate in the lab by optimizing an acquisition function a(x), based on a posterior distribution
P (r|Dt) over regressor functions y ≈ r(x). The acquisition function approximates the long-term
utility of measuring a given set of sequences, and is (approximately) optimized using an inner loop
optimizer.

There exist many surveys of Bayesian optimization methods, e.g., [27]. Gaussian processes (GPs)
are a common choice for the regressor [26, 32], but scale poorly, are sensitive to hyperparameter
choice and spatial non-stationarity. Alternatively, network ensembles have achieved promising results
for model guided biomolecular engineering [20]. Deep auto-encoders have also been used to learn
feature-spaces over which to perform BO [7, 10]. This paper does not consider such an approach
because it relies crucially on an available pretraining data for representation learning. Batching for
BO broadly falls into two categories: building batches iteratively [6, 8] or using acquisition functions
over batches [29, 31, 4, 28].

After the final round of experiments, our estimate of the optimum of f is argmaxx Er∼P (r|DT )[r(x)]
(based on the posterior mean of the regressor) or argmaxxf(x)|x ∈ D1...DT (based on sequences
measured in the lab). However, in many biological sequence design tasks, we need to protect the
health of patients that will be treated with these sequences. Therefore, the proposed sequences will
require validation using an expensive procedure (e.g., phage display or ELISA to measure relative
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antibody affinities to a target antigen), but may later be rejected based on characteristics independent
of f (e.g., toxicity or non-specificity). To maximize the chance of a proposed sequence passing
this additional screening, and to help secure the safety of patients, we request that BO discover a
diverse set of high-quality sequences. Therefore, we consider evaluation metrics below that assess
our ability to recover multiple local optima of f . Here, proposing diverse sequences is an end goal of
the experimental design, rather than an exploration strategy.

2 Design Choices for Bayesian Optimization for Biological Sequences
Batched BO over discrete sequences where the black-box function is evaluated in a wet lab requires
design decisions and exhibits experimental behaviours that are highly specific to this setting.

Bayesian regressor. GPs scale poorly to large datasets; we instead construct an approximate
posterior in terms of an ensemble of neural networks. The posterior predictive distribution is obtained
using an un-weighted average of the models’ predictions. To sample from the posterior distribution
over models, we select a model uniformly at random. Variation across models is due to parameter
initialization, SGD randomness, and bootstrap re-sampling of training data.

Batch selection. As wet-lab experiments are time-consuming but easily parallelized, each BO
iteration should propose a batch of sequences. We employ a simple, flexible, and scalable batching
strategy that first generates nB candidate sequences and then filters these down to B sequences. To
select the nB candidates, we use a single-input acquisition function (e.g., expected improvement [23]),
and select the best sequences discovered by an inner loop solver. A simple modification to the
candidate generation phase uses Thompson sampling [12, 15]: B regressors are sampled from the
posterior, and for each an inner-loop optimization is performed. As this is intractable for large B,
we instead employ a simple modification using k � B regressors, where we select a set of N/k
candidates for each regressor. Being able to support Thompson sampling also provides additional
motivation to use DNN ensemble over GPs: while DNN ensembles allow one to directly sample a
parametric function r(x) from the approximate posterior, for GPs the sampled function is defined
implicitly in terms of a procedure with cost that grows with the number of times the function has
been evaluated.

Candidate filtering. As discussed at the end of Section 1, for biology sequence design tasks, we
require a diverse set of final sequences to ensure that some of the selected sequences will pass an
additional validation phase independent of f . We choose to enforce this by requiring diversity at the
batch level; this approach is a known strategy in BO to minimize posterior uncertainty [5, 16], and
also encourages exploration around multiple local optima. To this end, we investigate two methods
for filtering the nB candidates down to B sequences.

– Type I Matérn hardcore point process (HCPs) [22], which remove points that are closer than a
tunable distance d from previously selected points;

– Determinantal point processes (DPPs) [18], which assign probability Pr(S) ∝ det(LS) to any
given set S where the matrix L ∈ RnB×nB encodes predicted sequence quality and pairwise
similarity between sequences. Previous work [16, 30] has shown that DPPs are valuable models
for exploration in batched BO, and can be used to model GB-UCB-PE [5].

Inner loop solver. The wet lab experiment is expensive to evaluate, whereas the acquisition function
a(x) — which requires no wet lab experiments — is cheap, allowing us to spend computational
time on optimizing a(x). When designing longer sequences, we use regularized evolution [25], a
general-purpose local search method. For medium-scale problems, the exact optimum can be found
by brute-force enumeration of the entire search space. Note that this approach is highly characteristic
of the discrete space we operate on, and would be impossible in a continuous setting.

3 Experiments

Our experiments consider two black-box optimization problems described in App. A that simulate
biological sequence design tasks. To compare our system to computationally expensive baselines, we
consider problems with shorter sequences and smaller batch sizes than real-world problems. In this
small-scale regime, we expect the computationally-expensive methods to excel. If scalable methods
are competitive, this gives us faith that our scalable methods perform well on large-scale problems,
where these baselines cannot be applied.

2



Unless otherwise noted, we use the expected improvement acquisition function. The quality of
sequences sampled in the first batch (where nothing is yet known about the space) provides con-
siderable variance in a given method’s performance. Finally, our evaluation considers the quality
of the sequences proposed by solvers over the course of optimization, rather than looking only at
the performance of a final ‘exploit’ step run in the final round. This simulates the setting where
experimentalists have a budget for N rounds, but seek to find high-quality sequences as quickly as
possible.

Figure 1: Scalability-accuracy tradeoff: two noteworthy design choices provide graceful scaling with
batch size and the sequence length: switching from a GP to a DNN ensemble and from an enumerative acquisition
solver to evolutionary search. The evolution solver performs similarly to enumeration (for the Ising model, their
mean performances are indistinguishable). Achieving this performance crucially depends on warm-starting
evolution with promising sequences from earlier rounds. For the choice of regressors, a GP with RBF kernel on
a one-hot representation of the sequence performs favorably to the DNN ensemble on medium-scale problems
when setting the GP hyper-parameters to their hindsight optimum. Overall, however, the BO with the GP is
sensitive to choice of hyper-parameters, and in real applications inference over these would be performed on the
fly. We also compare to two additional baselines: random selection and directly using the evolution solver to
optimize f .
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(a) DPP diversification on TfBind8

(b) HCP diversification on TfBind8
Figure 2: Diversifying batches: we investigate two mechanisms for filtering candidates, which are obtained
using Thompson sampling. The first does greedy MAP inference over an HCP: given nB candidates x1, . . . , xnB
sorted by decreasing predicted quality and a given distance d, we add point i to the batch if (a) we have selected
less than B points and (b) if xi is not within Hamming distance d of points that have already been selected. This
approach has the advantage of being highly efficient, but aggressively rejects points (e.g., if two high-scoring
sequences are within distance < d of each other, only one will be chosen). For this method, we recover standard
batch BO without batch diversification for d = 0. The second approach builds a DPP over the nB sequences
then greedily select the batch with highest probability under the DPP. This allows a graceful trade-off between
the quality of each sequence and the diversity of the batch but scales poorly with nB. We investigate the
family of DPPs with kernels of the form L = qαi k(xi, xj)q

α
j for α ∈ [0.1, 4], following the quality/diversity

decomposition advocated in [18]. Here, qi is acquisition function value rescaled to [0, 1], and k(xi, xj) is the
Hamming distance kernel function between sequences i, j. Both diversification methods improve the fraction of
discovered optima (see App. A for a description of this metric). Unsurprisingly, we see for HCPs that a small
distance threshold d is better for fast optimum discovery (left-most graph); conversely, larger values of d are
better to find many optima. On the other hand, as DPPs gracefully trade-off point quality with set diversity, DPPs
are able to simultaneously optimize for fast optimum discovery and fraction of discovered optima (e.g., α = 2.0
in (a) achieves good results across both metrics.
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Figure 3: Acquisition functions and uncertainty estimates: we investigate the performance of simple
methods for uncertainty estimation in neural networks: ensembling and test time dropout, including last-layer
dropout (LL-Dropout) [24], when applied with the expected improvement (EI) acquisition function. We also
consider alternative acquisition functions that do not require explicit modeling of the posterior predictive
distribution: Thompson sampling (TS) using an ensemble and performing ‘pure exploitation,’ where the
approximate posterior mean (PM) is the acquisition function. These are compared to using a single neural
network (DNN) without uncertainty estimates, expected improvement with a GP regressor (which provides
closed-form uncertainty estimates), and a negative control method which selects random sequences for each
batch. Among scalable methods, we find ensembles perform better than a single neural network or dropout
based methods. Additionally, we find the use of approximate posterior mean as an acquisition function is at least
as effective, if not more effective, as expected improvement or Thompson sampling for these tasks.
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4 Conclusion

Many intuitions and design decisions that are made for Bayesian optimization as it is commonly
used in machine learning (e.g., for hyper-parameter tuning) do not apply in the case of Bayesian
optimization over discrete biological sequences. In this paper, we presented some of the particularities
of the interactions between BO and wet-lab experiments: large-scale parallelism, the discrete search
space, and the need to find not one but a set of high-quality points. Experiments describe how
each of these design decisions impact BO performance, and aim to provide insight for practitioners
performing design in bio-medical applications.

A Appendix: in-silico biological sequence design problems

The next sections provide details for the optimization problems and metrics considered above.

Transcription Factor Binding (TfBind8): Genetic variation can impact the DNA binding specificity
of transcription factor proteins and result in altered gene expression levels. Such variants have been
associated with various human diseases and have been implicated in Mendelian diseases [2]. In [2],
protein-binding microarrays were used to evaluate DNA binding activity of all possible 8-mer DNA
sequences on 201 protein targets. Later, this dataset was adapted into an objective function to
optimize, where the fitness function is negative binding affinity [11]. The function is desirable for
benchmarking because it can be evaluated on all possible proposed sequences in software, but is
based on real experimental data. We use a batch size of 50 for this dataset.

Protein Contact Ising Model: Ising models compute the energy of a lattice of sites that can take on
one of a number of configurations and were developed as a theory for describing magnetic spin [13].
We have constructed an artificial version using binary protein contact maps from the Protein Data
Bank (PDB) [3, 21]. This contact map defines an Ising model where each node corresponds to an
amino acid in the protein, and an edge exists between two amino acids if the distance in 3-D space is
less than a predefined threshold when the protein is folded. The goal is to maximize the energy of this
model, using experiments with a batch size of 150. The optimization landscape is non-trivial because
the pairwise potentials for each edge encourage nodes to take on opposing values. The model we
employ consists of binary sequences of length 20, resulting in a space of over a million sequences.

Diversity-Based Metrics: Local optima for TfBind8 were computed, and the fraction of local optima
found was utilized as a metric. Since the TfBind8 problem applies the same reward (normalized
to [0, 1]) to sequences that are reverse complements of each other, the forward sequences in each
pair of reverse complements were gathered by ordering the sequence space lexicographically and
including each sequence in the set of forward sequences unless the set already contained its reverse
complement. For each of 12 binding sites, these forward sequences were thresholded at a reward
value to obtain a smaller set of good quality sequences. Agglomerative clustering was performed
on this set of sequences, using a distance matrix consisting of pairwise hamming distances, and the
maximum reward sequences in each cluster were determined to be local optima for the space. The
reverse complement of each optima were also considered as optima.

We also report the average Hamming distance between pairs of sequences within a batch. Although
recently there has been investigation of using the set likelihood under a DPP as a metric for diversity,
we do not use this metric as it would unfairly advantage DPP-based batching.
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