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Abstract

Wave equation techniques have been an integral part of geophysical imaging work-
flows to investigate the Earth’s subsurface. Least-squares reverse time migration
(LSRTM) is a linearized inversion problem that iteratively minimizes a misfit func-
tional as a function of the model perturbation. The success of the inversion largely
depends on our ability to handle large systems of equations given the massive
computation costs. The size of the system almost exponentially increases with the
demand for higher resolution images in complicated subsurface media. We propose
an unsupervised deep learning approach that leverages the existing physics-based
models and machine learning optimizers to achieve more accurate and cheaper solu-
tions. We compare different optimizers and demonstrate their efficacy in mitigating
imaging artifacts. Further, minimizing the Huber loss with mini-batch gradients
and Adam optimizer is not only less memory-intensive but is also more robust. Our
empirical results on synthetic, densely sampled datasets suggest faster convergence
to an accurate LSRTM result than a traditional approach.

1 Introduction

Imaging techniques are used in geophysics to produce images of the Earth’s subsurface at diverse
length scales. These techniques are recently being adopted for monitoring subsurface geological
formations that are used for carbon capture and storage (Figure 1). CO2 sequestration is one of
the solutions to the increasing greenhouse gas emissions that cause global warming and climate
change. In this context, wave equation based migration algorithms [1, 2] have been an integral part of
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imaging workflows to invert for subsurface properties at greater depths. Among them, least-squares
reverse time migration (LSRTM) [3, 4] is the most popular migration method due to its ability to
image complex subsurface areas with large computational resources such as graphic processing units
(GPUs). LSRTM can be seen as a linear inverse problem based on the acoustic wave equation. The
goal is to invert for an earth model that represents rock properties to fit the recorded surface data. The
imaging condition or the gradient calculation in LSRTM is to take the zero-lag of the cross-correlation
between the reverse-time-extrapolated receiver wavefield and the forward-time-extrapolated source
wavefield [5]. When the data is subjected to aliasing, truncation or noise, the adjoint operator can
degrade the resolution of the final migrated image. LSRTM obtains an approximate image of the
model perturbation by iteratively minimizing the cost function. The LSRTM, however, is an expensive
replacement and its ability to migrate surface data depends on the accuracy of the velocity model and
adequate preconditioning [6, 7], and needs additional regularization terms for successful damping
of artifacts [8, 9]. At each iteration of LSRTM, Born forward modeling and adjoint operators are
applied, which makes the computational cost extremely high.

Under the paradigm of theory guided data science, many researchers in the geophysics community
are looking at ways of combining physics and machine learning [10–17]. These works, however
were not extended to least-squares migrations. In this paper, we implement LSRTM using a deep
learning approach and adopt strategies from data science to reduce computational costs and accelerate
convergence.The feasibility of LSRTM is examined in combination with mini-batch gradients and
deep learning optimizers such as the Hopfield neural networks (HNN), adaptive moment estimation
(Adam) and Limited memory BFGS (L-BFGS). Mini-batch gradients help in reduction of cross-talk
[18–20] and the deep learning optimizers can help mitigate acquisition footprints that are caused by
the lack of shot data. This not only achieves faster convergence through iterations but also generates
geologically consistent models. The computation cost is further reduced by using a subset of total shot
data for each iteration. Implementing LSRTM in a deep learning framework (Pytorch or Tensorflow)
enables us to experiment with machine learning loss functions and regularizations. The automatic
differentiation capability of the software can be used to calculate the gradient of the cost function.
We further minimize the Huber loss function to improve the efficiency of LSRTM. We apply the
techniques to a 2D synthetic model and show improvement over conventional LSRTM baselines. The
proposed methodology achieves higher spatial resolution according to quantitative evaluation metrics.

2 Methodology

The goal of least-squares migration is to invert for the earth’s surface reflectivity model (model
perturbation indicating rock properties) m to fit the recorded data, d0:

C(m) =
1

2
‖d0 −Gm‖2 , (1)

where C is the cost/loss function to be minimized and G is the linearized Born modeling (scattering)
operator that requires a background velocity model. This background velocity model is known
a-priori from other velocity analysis methods. If GTG is invertible, the least-squares solution for
equation (1) can be written as:

m = (GTG)−1GTd0, (2)

where GT is the migration operator and GTG is the Hessian matrix H. The key to LSRTM is
to obtain the inverse of H; however the computational cost and storage of H are not feasible for
realistic problems. Alternatively, different approximations, such as gradient based iterative approaches
[21, 3, 22] are pursued. In this paper, we use PyTorch [23] for the above implementation. The Born
modeling based wave equations can be implemented as a recurrent neural network (RNN) which
is similar to the workflow proposed by [17]. The same operations are applied in each cell of an
RNN, but the data that the operations act upon changes. Each cell applies the finite-difference
convolution operation to propagate forward one time step, by taking the state from the previous
cell (the displacement wavefield at adjacent time steps and auxiliary wavefield) and the source
amplitude as inputs, and producing the updated state vectors and the current wavefield as outputs.
Although, automatic differentiation can be used to calculate the gradient of the cost function, we
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use the traditional adjoint state method to save GPU memory costs. Easy chaining of operations in
PyTorch, enables users to create customized loss functions or apply data normalizing operations. We
generate observed data with the full finite difference wave propagation operator. LSRTM intrinsically
is an under-determined inverse problem. There are always a limited number of receivers that can
cover the subsurface and the source function is a band limiting signal. This can lead to incomplete
data in terms of spatial coverage and frequency content. Here, we use the Huber loss function [24, 25]
to improve the resolution and robustness of LSRTM:

C(m) =
1

N

N∑
i

Ci(m) where Ci(m) =

{
1
2 ‖d0 −Gm‖2 if |d0 −Gm| ≤ ε
ε |d0 −Gm| − ε/2 otherwise

, (3)

where i is the corresponding shot record for i-th source and N is the total number of shots. The
parameter ε defines a threshold based on the distance between target and prediction. For the example
in this paper, we use a default value of 1 for ε. Conventionally, the LSRTM cost function is evaluated
at each iteration using all the shot data that is available. The gradient calculation can be very expensive
when the number of shots are large (especially in 3D surveys). To reduce the computation costs and
to reap the benefits of stochastic optimization, mini-batch gradient methods take a subset of entire
shots to construct the objective function and update the model:

C(m) ≈ CB
k (m) =

1

|B|
∑
i∈B

Ci(m), (4)

where B is a subset of total shots, and |B| is its size. This performs frequent updates with reasonable
variance and is faster to converge. The fluctuation of the objective function is not severe. We first
divide all the shot data into sequential mini-batches and then randomly shuffle them. Although
mini-batches offer a more scalable solution, they can introduce migration artifacts if the data is not
sampled effectively. Therefore, we need more efficient optimization algorithms to produce migrated
images with higher resolution. First-order gradient based optimization algorithms can be very slow to
converge to high accuracy solutions, specially in noisy large-scale datasets. We combine mini-batch
gradients with various optimizers such as the Hopfield neural networks (HNN), adaptive moment
estimation (Adam) and Limited memory BFGS (L-BFGS). These techniques not only reduces the
number of forward solves but also enhances the accuracy of inverted results when compared to
traditional LSRTM algorithms (using gradient descent (GD)). We provide qualitative and quantitative
comparisons of the above presented methods against conventional LSRTM baseline migrated images.
Note that, no preconditioning was used for either conventional LSRTM or for the proposed mini-batch
approach.

3 Results and Discussion

The synthetic example is based on a 2D slice from the SEG/EAGE 3D salt model [26]. This model
is 4 km in depth and 12.5 km wide. We set 160 shots and 160 receivers per shot both deployed on the
surface. The peak frequency of the source Ricker wavelet is 6 Hz. Figures 2(a), 2(b) and 2(c) show
the true velocity model, the background smooth velocity model and the true reflectivity respectively.
Figure 3(a) shows a conventional LSRTM image using GD after 20 epochs. The reflectivity is
still far from the true reflectivity and the bottom of the salt body is not very clear. Figure 3(b)
shows the migrated image from HNN which is slightly improved with a mean structural similarity
index (MSSIM) of 0.79. Figures 3(c) and 3(d) show the migrated images from L-BFGS and Adam
optimizers respectively. When combined with mini-batch training, not only the true amplitudes are
better recovered but also the salt bottom is now clearly resolved. The reflectors at the bottom of
the image are enhanced and there is no loss of continuity. The number of shots in each mini-batch
and the step-size for model updates are the two important hyperparameters. We randomly reserve
twenty-five percent of all the shots that evenly cover the entire survey. This development dataset is
used to evaluate the cost function for 25 combinations of batch-sizes and learning rates (Grid-search
optimization). The batch size and learning rate that correspond to lowest cost function value is chosen
for each optimizer. For 40 shots and Adam optimizer, the best learning rate and batch-size is 1e−7
and 4 respectively. The migrated images have an MSSIM index greater than 0.8 and the migration
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Figure 1: Geophysical imaging of geological formations for enhanced carbon capture and storage

Figure 2: SEG/EAGE salt model (a) True velocity (b) Smooth migration velocity model (c) True
reflectivity

artifacts are removed. Figure 4(a) shows the error convergence or the cost function calculated for
each optimizer. Adam and AdaBound converge within 6 epochs and the cost function becomes
flat beyond 10 epochs. However, the image from Adam (MSSIM=0.8255) has a higher MSSIM
than AdaBound (MSSIM = 0.8157). The performance of L-BFGS is comparable but converges in
slightly more number of epochs than Adam. Figures 4(b) and 4(c) plot the other validation metrics
for a quantitative evaluation. Using the Adam optimizer, at the end of 20 epochs, MSSIM index
reaches a value of 0.8255 from 0.77. Compared to Adam, conventional LSRTM shows almost no
improvement from the initial image. Additional preconditioning and filtering is usually needed to
greatly improve the image. The final R2 score of the Adam migrated image is raised to 0.34 from an
initial 0.06. The mean squared error (MSE) value is reduced to 0.825 and the peak signal-to-noise
ratio (PSNR) is improved to 47.78 over 20 epochs. Note that the PSNR value is measured in log
scale. The performance trend is overall positive.

4 Conclusions

We present a deep learning approach for LSRTM by adopting strategies from data-science to accelerate
convergence. In a time-domain formulation, mini-batch gradients can reduce the computation cost
by using a subset of total shots for each epoch. The Adam optimizer, combined with the Huber loss
and mini-batch gradients resulted in significantly faster convergence than when using conventional
gradient descent optimizer with the cost and gradient calculated using the entire dataset. We apply
the techniques to the SEG/EAGE 3D salt model and show improvements over conventional LSRTM
baseline. The described methods mitigate artifacts that arise from limited aperture, low subsurface
illumination, and cross-correlation noise. Effects that irregular sampling has on the proposed mini-
batch approach remains future work.
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Figure 3: SEG/EAGE salt model migrated images (a) Conventional LSRTM image (MSSIM=0.7755)
(b) HNN LSRTM image (MSSIM=0.79) (c) Mini-batch L-BFGS LSRTM image (MSSIM=0.8026)
(d) Mini-batch Adam LSRTM image (MSSIM=0.8255) (e) True reflectivity

Figure 4: Comparison of (a) Error convergence (b) MSSIM and PSNR (c) R2 and MSE metrics for
conventional LSRTM and mini-batch Adam LSRTM images
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