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1 Introduction

Traditionally, neural networks (NNs) are parameterized using optimization procedures such as
stochastic gradient descent (SGD), RMSProp [[18] and Adam [7]]. These procedures tend to drive the
parameters of the network toward a local minimum. In this article, we employ alternative “sampling”
algorithms (referred to here as “thermodynamic parameterization methods’) which rely on discretized
stochastic differential equations (SDEs) for a defined target distribution on parameter space. We show
that the thermodynamic perspective improves neural network training. Moreover, by partitioning the
parameters based on natural layer structure we obtain schemes with very rapid convergence for data
sets with complicated loss landscapes. The per-step cost of our methods is roughly similar to that of
other training methods such as SGD and Adam, assuming the major cost of a timestep is dominated
by the computation of the approximate gradient. For more details we refer to our preprint [[12]].

We describe easy-to-implement hybrid partitioned numerical algorithms, based on discretized SDE:s,
which are adapted to feed-forward neural networks, including a multi-layer Langevin algorithm,
AdLaLa (combining the adaptive Langevin and Langevin algorithms) and LOL (combining Langevin
and Overdamped Langevin); we examine the convergence of these methods using numerical studies
and compare their performance among themselves and in relation to standard alternatives such as
SGD and Adam. We present evidence that thermodynamic parameterization methods can be (i) faster,
(i1) more accurate, and (iii) more robust than standard algorithms used within ML frameworks.

2 Bayesian parameterization

We focus on the training (parameterization) process for neural networks using ideas from statistical
mechanics. We take the Bayesian perspective, that the parameters 6 of a NN are defined by data
D only in the sense of a probability distribution given by Bayes’ formula. When the probability
distribution is unimodal and convex it is natural to choose 6 as the mode of the target distribution
by maximizing the posterior probability density using the MAP technique, but in practice this does
not hold for NNs. It then becomes a challenge to identify all relevant possible parameter values,
and to compare different parameter choices in terms of their relative probabilistic weight. This
task is referred to as sampling, and thus the Bayesian parameterization problem naturally reduces
to a sampling problem for the parameters of the model. While the idea of Bayesian modelling is
commonplace in all areas where statistics is used, the Bayesian perspective is usually only viewed as
the starting point for optimization schemes in the setting of high dimensional NNs, due to the vast
amounts of data and parameters involved [13]]. We argue here that the sampling approach can provide
parameterization candidates with as great or greater efficiency than standard optimization schemes.

We use the well known link between posterior sampling and MAP estimation. Introduce the negative
log posterior L(#) = —In p(6|D), and define p,(0) = exp(—7'L(#)) = p(6)*/". For 7 = 1 we
have the posterior density. For 7 — 0 we obtain a sequence of distributions which, although globally
supported, have their mass confined progressively closer to the mode of the distribution. Thus we can
think of MAP as an extreme form of sampling in which the sampled distribution is confined to the
vicinity of the mode(s). In this setting, 7 becomes a parameter of an embedded family of models which
may be used to enhance the optimization process. An example is the process known as annealing,
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where 7 is gradually driven from higher to lower values [8]. The parameter 7 plays precisely the same
role as temperature in statistical physics, thus the use of the term thermodynamic parameterization to
describe methods that rely on this embedding (and the sampling of the associated family of probability
distributions) to enhance the parameterization procedure. In practice, whether we take a full Bayesian
or pure MAP perspective, a relatively small range of parameter values are likely to be of interest (those
that have relatively large statistical weight with respect to the probability distribution). Moreover,
there is often much to be gained by exploring parameters in the vicinity of a local maximum, i.e. by
short sampling paths. In this work we propose to use, as in stochastic gradient Langevin dynamics
(SGLD) [19], additive noise (which has an adjustable but fixed strength) to stabilize the invariant
measure of the stochastic dynamics, relying on underdamped Langevin dynamics and applying state-
of-the-art discretization methods [[10], which introduce additive noise within a framework of second
order stochastic dynamics. For more details we refer to our paper [12]. Underdamped Langevin
dynamics is described by the equations df = pdt, dp = —VyL dt —ypdt + /2y7 dW,, where §
are the parameters of the neural network, p the corresponding momentum variables, L the loss,
(friction) and 7 (temperature) are parameters to be tuned, and W, a standard N-dim. Wiener process.
To demonstrate the potential relevance of temperature in parameterization of NNs we compare two
classifiers for planar trigonometric data obtained using Langevin dynamics for a fixed amount of work
but parameterized with different temperatures (see Fig. [I). Both the test accuracy and qualitative
features of the classifier improve as temperature increases. However, a too large temperature can also
negatively affect the results, suggesting a ‘Goldilocks’ temperature region of optimal efficiency.
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Figure 1: These classifiers are computed using the BAOAB Langevin dynamics integrator [10]. We
used 50k steps with stepsize h = 0.4, friction v = 10, a 500 node single hidden-layer perceptron
(SHLP) with ReLU activation, sigmoidal output and a cross entropy loss. Temperatures were set to
7 =le-8 (left) and 7 =1e-5 (right). The figures show that the classifier substantially improves as the
temperature is raised. Visually, this means that the contrast between the color of the classifier and of
the plotted data is higher. The data for class 0 is given by x = 3¢,y = cos(2tw) +0.02N (0, 1), where
t is drawn repeatedly from 2/(0, 1) to generate data points. Data for class 1 is generated similarly but
with cos replaced by sine. We used 1000 training, 1000 test data points and 2% subsampling.

A model for the cause of the performance gain due to elevated temperature may be found in molecular
diffusion on a rough energy landscape [20,15]. In a corrugated energy surface and at zero temperature
the system will likely get stuck in local minima, lacking the required energy to overcome barriers
blocking movement between states. Increasing the temperature allows weak interaction with a heat
bath, randomly introducing energetic fluctuations into the system that can move it over barriers and
away from local minima. If the temperature is too small the fluctuations are small and it will take long
to cross barriers, whereas too large and the system will not be drawn towards the global minimum.

3 Partitioned discretization algorithms

In layered or hierarchical models, e.g. deep neural networks, we have a natural partitioning of the
parameter vector according to the role in the hierarchy. It may be useful to treat the parameters at
different levels of the hierarchy differently in the parameterization process. In particular, it is possible
that, either due to design or some feature of the network, the characteristics of the gradient noise
introduced at different layer depths may differ, and it is then natural to design a method that treats the
components independently. Lan et al. [9] observe that fixing the weights and biases of a NN’s last
layer can enhance the performance of training algorithms. We draw on this idea here for motivation
in developing a family of partitioned algorithms for NN training.



We have developed partitioned thermodynamic algorithms which allow to vary the hyperparameters
and even the form of the algorithm in various layers. For example, one class of methods (LOL)
combines Langevin with overdamped Langevin dynamics (friction v — 00) in the output layer. To be
more specific, the LOL method applies a Langevin optimizer to update the weights and biases in the
first layer and simultaneously uses an overdamped Langevin optimizer to update the parameters in
the output layer. Another family of methods (AdLaLa) blends adaptive Langevin dynamics [5]] (also
known as SGNHT [[1]]) with Langevin dynamics. We found it advantageous to use low temperatures
in the output layer but to maintain the hidden layer parameters at slightly elevated values. This
means that those inner parameters can rapidly explore a wide range of low-loss states. We conjecture
that it is this fluidity in the hidden layer which gives the LOL and AdLalLa methods their improved
convergence speed for difficult classification tasks. In the extreme case, where the temperature is
zero in the output layer of AdLaLa, that part can be viewed as a dissipated gradient system and thus
analogous to gradient descent with momentum. However, the adaptive control of the first part of the
partitioning appears to provide enhanced flexibility in the approach to the overall minimum.

For properties of the partitioned algorithms we draw on three recent works: (i) hypoelliptic properties
of Langevin dynamics numerical methods [[11]], (ii) hypoelliptic properties for Langevin dynamics
with configuration-dependent noise [16] and (iii) very recent work on weighted-L? hypocoercivity
of Adaptive Langevin dynamics [17]. The latter results allow to establish a Central Limit Theorem
which is very important in statistical applications.

4 Numerical examples and discussion

The methods were tested using three separate codes for cross-validation and verification of consis-
tency: PyTorch [14], a DLIB package [6] written in C++, and a custom native C++/QT application
which has been created by the authors for rapid visual exploration of training algorithms. In this
work, we examine parameterization in the context of binary classification of spiral and trigonometric
data, as well as limited testing with the MNIST data set. We found that the results were significantly
different for the different problem classes. Our methods significantly outperformed standard optimiz-
ers for spiral and trigonometric datasets, whereas they perform competitively on MNIST compared
to standard optimizers, but do not significantly outperform the other methods. We believe that this
is caused by a fundamental difference in the loss landscape structure of the different data sets and
therefore in the flexibility of the optimizers required to tackle them. In Huang et al. (2019) [3] they
illustrate this by studying a binary classification problem, where they pinch the margin between
two rings of datapoints, which causes any good minimizer to be "sharp". The small volume of the
corresponding basin, makes these minima less likely to be found by standard optimizers.

We observe that there appear to be significant loss-barriers in the landscapes of the spiral and
trigonometric data sets. For this reason, methods such as SGD and Adam, which, up to gradient
noise, monotonically decrease the loss, can easily become trapped in unsuitable states or be slowed
down by the presence of saddle points. By contrast MNIST data and related image classification
problems may be relatively free of these issues, which causes our tests on MNIST data to show fewer
substantial differences among optimization schemes. In our paper [[12] we illustrate this using the
technique of 1D linear interpolation proposed by Goodfellow et al. (2015) [2] and a surface plotting
technique [4], but this is beyond the scope of this extended abstract.

4.1 Thermodynamic parameterization methods can have very rapid convergence

We provide evidence that LOL and AdLal.a are able to converge more rapidly to a low test-loss
parameterization than standard optimizers such as SGLD or Adam. In Figure[2] we show the obtained
test losses/accuracies using different optimizers for the trigonometric example. Adam is clearly not
able to reach the accuracy that LOL and AdLaLa obtain. Its progress slows down rapidly and halts
completely after 40k steps. After 100k steps its maximum test accuracy is still around 73%. SGLD is
not able to compete at all. SGD is not shown in this figure, but also converges much slower than our
methods for this example. We obtained similar results for the binary classification of spiral data sets,
where class 0 was generated by x = 2t cos(2bt7) + 0.02N (0, 1),y = 2t sin(2btm) + 0.02M(0, 1)
and the other class is created by a shift in the argument of the trig functions by 7. When we vary b,
this directly affects the number of turns of the spiral and therefore the complexity of the problem.
We studied the performance of the different optimizers for 3-turn (b = 3) and 4-turn (b = 4) spirals,



which can be challenging test cases for standard optimizers. We observed that AdLalLa and LOL
make fast headway towards high test accuracies, whereas Adam and SGD appear to get stuck in a
parameterization with many small weights/biases and thus struggle to obtain good test accuracies.
AdLal a consistently outperforms Adam, SGD and SGLD in terms of convergence rate for these
examples. Although we varied the stepsize for Adam, we did not vary the default parameters for
Adam, i.e., the decay rates for the moving averages of the first and second moments. Although this is
common among practitioners, there is some room left for experiments here.
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Figure 2: Test losses and accuracies obtained for the trigonometric example, where the data for class
0 is generated using x = 10¢,y = cos(tw) + 0.02N(0, 1) and the same equation holds for class 1,
but with a sine instead of a cosine. The results were averaged over 20 runs. It is clear that LOL and
AdLaLa outperform the other methods. The stepsize for SGLD, LOL and AdLaLa were all set to
h = 0.1. We used a 100-node SHLP, 1000 test data, 1000 training data and 5% subsampling.

4.2 Features of thermodynamic parameterization methods

We observe fundamental differences in the parameterizations obtained by sampling methods, such as
SGLD and AdLaLa, compared to standard optimizers. The sampling methods rapidly excite a large
amount of parameters, whereas SGD and Adam obtain parameterizations which have many (close to)
zero weights and biases. We also observe that thermodynamic parameterizations appear to give rise to
classifiers whose level sets are relatively smooth compared to those produced by alternative methods.
Thermodynamic parameterization thus effectively controls the distribution of weights—more precisely
the distribution of the conjugate momenta associated to the weights, due to the statistical mechanical
property known as equipartition of energy. This is a consequence of ergodicity which simply states
that the mean kinetic energy of all degrees of freedom, in thermal equilibrium, is constant. We
confirmed experimentally that the magnitude of the squared momenta are approximately controlled
by the set temperature value in AdLalLa and LOL.

Another benefit of using the thermodynamic parameterization approach is that it reduces the de-
pendence of the training result on the initial conditions. We observe that SGD and Adam have a
much larger variance in their obtained test accuracies over different runs than our methods. We also
evaluated the robustness of our algorithms to overfitting. We studied the 2-turn spiral dataset with
high noise level using a 500 node SHLP and a small amount of training data. For this example, SGD
clearly overfits. In contrast, LOL with a large enough friction value can be shown to not exhibit this
behaviour. The same can be said for AdLalLa for specific hyperparameter values. For these parameter
settings LOL and AdLaLa are slower in reaching the desired test and training accuracy, but this leads
to more stability later on in the training process and limits the need for early stopping techniques. We
should emphasize that we don’t claim that our methods never overfit, merely that they allow more
flexibility which can lead to increased robustness to overfitting.

4.3 Discussion

We have presented a new approach to parameterization of neural networks which can, in data classifi-
cation problems with complicated loss landscapes, accelerate convergence and provide improved test
accuracy. The use of additive noise to supplement gradient noise was already proposed in previous
works of other authors. We draw on this, by combining it with state-of-the-art principles for sampling
algorithms coming from molecular dynamics and deploy partitioned algorithms that substantially
improve on SGD and other optimization procedures. Although the experiments of this article have
focused on toy problems and single-hidden layer perceptrons, our methods can easily be generalized
to deeper networks and based on some limited testing we have done in this area, we expect our



methods to perform well in this setting. However, to maximise the benefit received from using our
optimizers, one may have to increase the number of partitionings in this setting and therefore the
number of hyperparameters of the optimizer. We also expect that our methods will be valuable in the
study of streaming data, where the improved generalization properties of the models trained using
our methods will help reduce costly reparameterizations.
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