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Abstract

Renormalization is a technique for studying the scale-dependence of correlations in
physical systems through iterative coarse-grainings over longer and longer distance
scales. The similarity of this procedure to the iterative layer-by-layer abstraction
that occurs in deep learning models has motivated applications of machine learning
to modeling physical systems, in particular the Ising model, and has also led to
speculation that viewing deep learning through the lens of renormalization may be
able to explain some of the effectiveness of deep neural networks in other domains.
In this work, we demonstrate a method to find an optimal coarse-graining of the 2D
Ising model by training a feedforward convolutional neural network (CNN) with a
simple classification objective that incentivizes the network to learn long-distance
correlations. We comment on the information theory interpretation of this method
and its possible applications to a wider variety of machine learning problems.

1 Introduction

In physics, the correlations of variables in a statistical (or quantum) system are often encoded in
a local Hamiltonian, which gives a compact representation of the correlations and makes manifest
the underlying interactions of the system’s fundamental components. For example, the 2D Ising
model is parameterized by a set of ‘spin’ variables with values si = ±1 and local interactions
on a square lattice, and its correlations are completely defined by the temperature T and the local
hamiltonian H = −

∑
links ij sisj . However, the local Hamiltonian description of a theory does

not make manifest the scale-dependence of correlations– for example the emergence of long range
correlations at the critical temperature of the phase transition is not at all obvious in the local
Hamiltonian description. Renormalization developed as a set of techniques to make this scale-
dependence manifest by iteratively coarse-graining the variables of the theory. The 2D Ising model
can be renormalized by coarse-graining clusters of spins through a simple averaging or decimation
procedure [17], and the ‘flow’ of the coupling strength of the local interactions between the coarse-
grained spins gives a simple theoretical picture of the scale-dependence of the correlations and a
way to access the critical behavior of the phase transition. More recently, holographic theories and
multiscale tensor networks [25] have also emerged as alternative descriptions of systems originally
described by local Hamiltonians. These descriptions make the renormalization of the theory manifest
by embedding scale-dependent coarse-grainings of the system into auxiliary variables, and have been
proposed for many models including the 2D Ising model [5].

Meanwhile, deep neural networks have developed in the machine learning community as an effective
tool for encoding correlations learned from training data in high dimensional spaces. Qualitatively, the
layers of the network appear to allow iterative abstraction in the representation of the data [2]. These
networks have been shown to be effective in modeling the 2D Ising model [22, 21, 24, 18, 7, 8, 16, 6,
4, 27, 28], and it has been proposed that the deep neural network description of a system may make
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manifest the renormalization of the system, as layers of the network can be interpreted as progressive
coarse-grainings. Evidence that this is true for deep belief networks and the 2D Ising model has been
presented and debated in Refs. [22, 21, 24, 18]1, and leads naturally to connections between deep
learning and tensor networks [3, 23, 20, 10] and holography [9, 13, 12, 11, 15, 26, 10, 14]. Conversely,
these works also propose that the ability of deep learning models to discover renormalization-like
descriptions of physical theories may help explain their effectiveness at modeling more general
distributions with highly scale-dependent correlations, such as those found in computer vision
problems.

In the literature so far, these connections have primarily been explored in the context of generative
RBM and deep belief models. In this work, we instead explore the connections between renormaliza-
tion of the Ising model and deep neural networks using a simple feedforward CNN and a supervised
learning task, which we believe illustrates the generality of this connection to more typical computer
vision models. Our approach, similar in spirit to Refs. [18, 19], is to use a neural network to identify
an optimal coarse-graining of the system, and our results show that the training procedure naturally
identifies a non-trivial coarse-graining in the convolutional layers without any a-priori knowledge of
the dynamics of the system. The fact that the network can find such a coarse-graining can be seen
both as a practical tool for using machine learning to more efficiently coarse-grain physical theories,
and as an insight into how computer vision neural networks may be ’applying renormalization’ to
develop features that preserve long-distance correlations while discarding short-distance information.
In Section 2 we explain the motivation and details for our training procedure, and then in Section 3
we present our results, before returning to these more general connections between renormalization
and deep learning in our conclusions.

2 Methods

Since the goal of renormalization is to coarse-grain in a way that preserves long distance correlations
in the data, we propose a supervised learning task for our CNN that leads to this behavior. We
simply train the network to distinguish between two datasets, the ‘correlated’ and ‘scrambled’ set
– the ‘correlated’ set is generated by monte carlo sampling of the model, and the ‘scrambled’ set
is generated from the ‘correlated’ set by a scrambling procedure that yields identical short range
distributions but removes all long-range correlations in the data. The network first filters the short
range data through a convolutional layer, generating a coarse-grained representation. Then, a fully
connected layers take the coarse-grained representation as input and learn to distinguish the datasets
based on the long-range correlations. This process forces the convolutional layer to learn features
that extract the long-distance correlations. Refs. [18, 19] have defined an optimal coarse-graining as
one that optimizes the mutual information between the coarse-grained region and its environment,
and demonstrated a purely information theoretic learning objective with an RBM model that finds
optimal features; in this work we show that our simple training scheme, which can be implemented
with comparative ease and more closely resembles standard computer vision approaches, can also
learn coarse-grainings that approach optimality.

Concretely, we first generated a Monte Carlo data set of 10,000 Ising models configurations on an
81× 81 lattice with periodic boundary conditions, sampled at the critical temperature Tc = 2.269.
From this dataset, we draw 10,000 configurations of a 9 × 9 square, and call this the ‘correlated’
data set2. We generate the ‘scrambled’ data set by sampling 3 × 3 squares from the full set of
configurations, and concatenating them at random into 9× 9 squares. Samples of the correlated and
scrambled class are shown in Figure 3 (extended to the full 81× 81 lattice).

We then trained a CNN to distinguish between the scrambled and correlated datasets. The model
architecture comprises a convolutional layer of one 3 × 3 filter with a stride of 3, using a tanh
activation function, followed by a multilayer perceptron with a hidden layer of 10 units. Effectively,
the convolutional layer coarse-grains the 9× 9 image into a 3× 3 image, which is then classified by
the fully connected layers. We used the ReLU activation function for the input and hidden layers
and used the sigmoid activation function to output a probability that a system is correlated. We used

1Refs [4, 27, 28] use similar techniques, but focus on machine learning as a tool to identify phase transitions.
Refs. [8, 16, 6] have followed another tack of defining an RBM flow and comparing it to the RG flow, though
the generality and consequences of this connection are less clear.

2Our 9× 9 image size is chosen to be much smaller than the full 81× 81 lattice to avoid finite size effects.
In future work we will demonstrate this procedure applied iteratively on much larger lattices.
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Figure 1: Left: Histogram of test accuracies for the frozen convolution vs. unfrozen convolution
training schemes. Right: Histogram of the weights after training. The red vertical line is the weight
of the frozen convolution (1/8 except for the center).

Figure 2: Histogram of test accuracies for different numbers of convolution channels.

the cross-entropy loss function, and trained the network using stochastic gradient descent using the
Adam optimizer. The hyperparameters were adaptively tuned using the Adaptive Experimentation
platform [1].

We trained the model on 5000 data points, setting aside 2000 data points for testing. Our metric of
choice is accuracy on the test set, where we consider a prediction for a data point accurate if the
network’s output lies on the correct side of the decision boundary (above 0.5 for a correlated system,
below 0.5 for a scrambled system). For each model we trained 500 times with different initializations
to obtain a distribution of accuracies.

3 Results

To show that our method finds a non-trivial coarse-graining that maintains the long-distance infor-
mation, we compare two cases. In the first case, we train the fully connected portion of the network
on a standard coarse-graining, the average of all the boundary spins (see Fig. 1) – this is called
the ’frozen convolution’ model, indicating that we have in effect simply fixed the convolutional
layer to perform an average over the spins. We compare this to the ’unfrozen convolution’, where
the weights of the convolutional layer are allowed to adjust during the training period, learning a
more effective sets of weights. As shown in Fig. 1 and Table 1, the accuracy of the model with an

Table 1: Test Accuracies
Name Accuracy ± Standard Error

Frozen Convolution 0.918 ± 2.16 ×10−4

Unfrozen Convolution (1 Channel) 0.924 ± 3.82 ×10−4

Unfrozen Convolution (2 Channels) 0.921 ± 3.68 ×10−4

Unfrozen Convolution (3 Channels) 0.927 ± 3.31 ×10−4
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Table 2: Mutual Information
System Mutual Information (bits)

Fine Grained 0.743
Coarse grained (Unfrozen Convolution) 0.618
Coarse grained (Frozen Convolution) 0.602

Figure 3: From left to right: A sample of the correlated data class. A sample of the scrambled data
class. An undiscretized coarse-graining for the correlated data sample. A discretized coarse-graining
for the correlated data sample.

unfrozen convolution is significantly higher, indicating more of the long-range correlations have been
preserved by the learned coarse-graining. On the right of Fig. 1 the learned weights are visualized,
showing that the non-trivial convolution learned by the network emphasizes the corners of the 3x3
spin block it averages over. This agrees with the intuition that the corners are more strongly coupled
to the neighboring spins than the other edge sites. While this remains a fairly simple coarse-graining
problem, in more sophisticated physical theories like quantum chromodynamics (QCD) such an
approach may have promise to learn highly non-trivial coarse-grainings.

As shown in Table 2, we can use the mutual information to quantify the amount of long-range
information preserved by the coarse-graining. We use the Monte Carlo data to estimate the mutual
information between two neighboring 3× 3 blocks before and after the coarse-graining, where we
measure the mutual information in bits defined by

I(A,B) =
∑
A,B

P (A,B) log2
P (A,B)

P (A)P (B)
(1)

As argued in [18, 19], an optimal coarse-graining would preserve all of the mutual information
between the block and its environment, and we use the mutual information between two neighboring
blocks as a proxy for this. The results show that the learned coarse-graining comes close to the bound,
even though unlike the procedure of [18] we have not directly optimized the mutual information in
our training scheme.

Another strength of this method is that additional convolutional channels can be added, corresponding
to coarse-grainings to multiple variables. As shown in Fig. 2 and Table 1, increasing the number of
channels appears to increase the accuracy, though higher statistics samples are needed to verify that
the additional channels increase the mutual information.

4 Conclusion

In this work we demonstrated a simple method using a feedforward CNN to learn optimal coarse-
grainings that preserve long distance correlations in data, analogous with renormalization approaches
in physics. With the 2D Ising model as a test case, we used a mutual information measure to
demonstrate that our learned coarse-graining features perform better than a naive averaging used in
standard renormalization approaches. In future work, we will demonstrate the flow of the learned
coarse-graining parameters under iterative applications of the technique to the Ising model, and intend
to show that this procedure can also be applied to significantly more complicated physical theories
like QCD, where highly non-trivial coarse-grainings are expected to emerge.

Applications of this technique to other domains are also of great interest– for example, long-distance
correlations play an important role in natural image classification, and a promising direction is to
apply this technique to unlabeled natural image data to hierarchically extract the features that carry
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this long-distance information. The hierarchical extraction of correlations is also an important issue
for developing generative models that accurately capture multi-scale correlations, and our technique
for iteratively extracting hierarchical coarse-grainings of data may be useful to train generative models
factored over multiple scales to address this difficulty.
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