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Abstract

Data Quality Assurance plays a crucial role in all high-energy physics experiments.
However, methods currently employed in the ALICE experiment at the Large
Hadron Collider rely on traditional data analysis techniques based on statistical
analysis of the data. The machine and deep learning techniques could handle
higher-dimensional and more complex problems than the traditional ones. In this
work we show a new method for data quality assessment in the ALICE experiment
which leverages from the autoencoder processing. We present and compare several
architectures of deep autoencoders and variational autoencoders. Considering
a specific physics channel, using limited statistics of real data from the ALICE
experiment, we show that our approach outperforms current methods. In the
considered analysis we gain better separation of anomalies saving up to 35% of
data examples set as anomaly and get a continuous score instead of binary cut.

1 Introduction

Data quality assurance at the CERN Large Hadron Collider [1]] is preventing the storage and usage of
data containing anomalies for analysis. ALICE [2], one of four big experiments at CERN, is focused
on the study of heavy-ion collisions. In our work we focus on the ALICE offline quality assurance [2]
of the Time Projection Chamber (TPC) [2]]. TPC is the main tracking detector of ALICE and its
performance is crucial for the vast majority of the physics analyses. ALICE TPC is the largest time
projection chamber ever built and it is very sensitive to the properties of the gas - proper quality
control is of great importance in the case of this detector.

For the data quality assurance the current approach is an automatic system that monitors around 40
parameters defined by detector experts. Some parameters are related to low-level features of the
reconstructed tracks. Quality assurance in ALICE is performed run-by-run, where a run covers the
period of data taking corresponding more or less to a single fill of the LHC (around 12 hours). After
a couple weeks of collecting of the data and gathering values for many runs, the system calculates
the mean and standard deviation for each parameter and applies outlier label for values deviating by
more than 3 o from the mean. Finally, all flags are combined into a single flag that classifies a given
run to be right for further analyses.

We propose to use autoencoders [3]] for this anomaly detection problem. Because of the generalisation
enforced by the bottleneck of a standard autoencoder, we can treat observations with the highest
reconstruction error as anomalies. As observed in [4]], abnormal examples are usually underrepre-
sented in the latent space of properly trained autoencoder and this should result in high reconstruction
error. We compare several architectures of deep autoencoders and variational autoencoders. To ensure
extreme generalisation we evaluate models with up to two neurons in the latent space.

We analyse the results of the proposed technique considering a specific physics analysis and using
real data from the ALICE experiment. Our tests indicate, that our solution does not only discovers
the same data anomalies as the standard quality assessment technique, but it also discards only the
most abnormal examples — true data anomalies. Our physics studies performed on the selected subset
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of data revealed that, while using autoencoders, we can save, in the considered analysis, up to 35% of
data examples set as outliers while retaining the same purity of the sample.

Related Works

Researchers from CMS proposed similar solution [5]] [|6] for CMS offline quality assurance. Studies
reviled that autoencoder architecture performed the best in terms of anomalies discovery reaching
AUC = 0.905. This approach was valuable for quality assurance experts with easy to interpret result.

2 Proposed solution

For the purpose of studies presented in this work, the set of tracked parameters was extended to
over 200 quantities related to working conditions inside the detector. Second major difference is the
usage of data taking periods of much finer granularity, corresponding to around 10-15 min of data
acquisition. We gathered the data from five periods, two from lead-lead collisions (LHC18q,LHC18r),
and three from proton-proton collisions (LHC18f,LHC180,LHC18p). Because of the vast difference
between collecting data from lead-lead and proton-proton collisions we separated these into two
datasets. We then performed a standard data assurance procedure by assigning to each data chunk an
automatic quality label. In total this processing resulted in 8116 data samples out of which 296 were
identified as outliers.

To find unseen relations and correlations between parameters we use the deep learning model. After
reducing the number of input parameters from 200 to 97, by using only parameters that are physical
attributes, we built an autoencoder model with 2 hidden layers encoder with 512 and 128 neurons, a
latent space with 64 neurons and a symmetric decoder with 2 hidden layers with 128 and 512 neurons.
We transform features by scaling each to the range [0,1]. We use Leaky ReLu activation and Sigmoid
activation function|3]] for the last layer. For our loss function, we take a mean squared error loss.
The neural network was implemented in Python using Keras library with TensorFlow backend [/7].
To ensure that our deep model will not develop a way to encode anomaly data into latent space we
use the automatic quality label to use data of outliers only for testing. We have built a variational
autoencoder using similar architecture. For both models we check their results obtained with a latent
space changed to only 2 neurons to ensure extreme generalisation.

3 Results
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Figure 1: ROC curve and precision-recall plots for semi-supervised anomalies detections with
autoencoder and variational autoencoder for (a) lead-lead collisions (b) proton-proton collisions.
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To analyse our unsupervised learning methods we confronted the results with standard quality
assurance procedures. As is visible in the ROC plot (Fig. [T), with fine tuned training, we are able to
recreate almost the same classification as with the standard procedure. On the other hand, we can
tune an autoencoder to provide softer cuts on the data and therefore increase the efficiency of data
selection. ROC plot (Fig.[T)) shows that 2 neurons in the latent space is enough to find outliers with
surprisingly excellent accuracy.

Visualization of a two-dimensional latent space (Fig. [2)) for proton-proton collisions shows that
there are general differences between examples within different data-taking periods. Additionally,
visualization reveals that autoencoder groups examples by periods, while variational autoencoder
sampling of these is also done in groups but with much smoother transitions between them.
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Figure 2: Visualization of 2-D latent space in (a) autoencoder and (b) variational autoencoder
sampling for proton-proton collisions with marked different data-taking periods.

Comparison of our models is done with standard methods set as ground truth. We know that the
automatic system is not ideal and that it can classify some samples wrongly. Comparing autoencoder
and variational autoencoder models (Fig. [3) show that both models find same most abnormal samples.
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Figure 3: Resemblance of autoencoder and variational autoencoder models for (a) lead-lead collisions
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Choosing the number of outliers that both models found with 90% resemblance provides us with a
threshold that we compare with the number of outliers found with the standard method (Tab. [I)).

Table 1: Comparision of outliers found with standard methods and autoencoders

Periods Standard methods  Autoencoders
Lead-lead collisions 2.7% 1.9%
Proton-proton collisions  4.9% 3.1%

To validate our observations we performed additional studies, by running a simple physics analysis on
the whole collected data samples. For each data chunk we fit a peak of the invariant mass of K3. As
presented in (Fig. @), our approach with autoencoders tends to tag as outliers mostly data chunks for
which the invariant mass lies on the far edges of the global distribution. On the contrary, the standard
anomalies detection method selects also data samples with central mass selection. This might suggest
that standard methods tag too many data as anomalies.
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Figure 4: Mean and ¢ of K g invariant mass distributions for outlier selection with autoencoder (a),
and standard procedure (b).

4 Summary

Using unsupervised machine learning methods in the ALICE offline quality assurance of the Time
Projection Chamber can not only recreate standard methods results but also improve separation of
anomalies. Autoencoders and variational autoencoders are not only good algorithms to find outliers
but are also great tools to visualize and analyze results. Even using only a 2 dimensional latent space
our models show excellent accuracy in finding anomalies. Comparing our models we found only
most abnormal examples — true data anomalies. With this information we save 35% examples tagged
with standard methods as outliers in the considered statistics. We also confirm our conclusions by
testing our methods with the analysis of the invariant mass distributions of K.
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