Exploring the chemical space without bias: data-free
molecule generation with DQN and SELFIES

Théophile Gaudin
IBM Research Ziirich, Switzerland
Department of Computer Science, University of Toronto, Canada
tga@zurich.ibm.com

AkshatKumar Nigam
Department of Computer Science, University of Toronto, Canada
akshat.nigam@mail.utoronto.ca

Alan Aspuru-Guzik
Department of Chemistry, University of Toronto, Canada
Department of Computer Science, University of Toronto, Canada
Vector Institute for Artificial Intelligence, Toronto, Canada
Canadian Institute for Advanced Research (CIFAR) Senior Fellow, Toronto Canada
alan@aspuru.com

Abstract

We propose a method for de novo molecule design that is free of human- and data-
biases. We used a deep g-network [[1] to train an agent to learn how to sequentially
generate a molecule with SELFIES representation [2]. Using SELFIES instead of
SMILES [3] frees the agent from having to learn a specific grammar, as even
completely random SELFIES produce valid molecule. The network is rewarded
according to the output molecule’s value of the partition coefficient, logP, which is
considered as the Drosophila of computational chemistry. After less than an hour of
training on a single GPU, the agent was successfully producing molecules with the
targeted property value. Bias-free design could lead to unrestricted exploration of
the entire chemical space, and exploring regions that humans (and human-generated
data) might have entirely overlooked so far. This property makes our algorithm
directly applicable to other design questions in the physical sciences.

1 Introduction

Exploring the chemical space of compounds is a task that recently gained traction due to an increase
in the amount of data available and to the advances in machine learning and Al. So far, most
approaches [4H11]] focus on using the available data to generate new molecules. As no database
can encompass the entirety of the chemical space, while these methods have contributed to great
advancements in chemical compounds generation, they are also biased by the data available to them.

It has already been shown that blind application of machine learning can amplify systemic mistakes
[12]. Because data is limited by our current discoveries, it is restrained and biased by our current
knowledge. In brief, molecule generation that relies on data is limited and biased to a particular area
of the chemical space.

In this paper, we propose a method that does not rely on pre-collected static dataset and is, therefore,
able to explore the chemical space in an unbiased way. Our method uses deep g-network (DQN) [1]]

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.



combined with a representation of molecules called SELFIES [2]]. The combination of SELFIES and
reinforcement learning is particularly interesting as SELFIES strings are always valid. The use of
SELFIES instead of SMILES [3]] also frees the network from having to learn any grammar. The reward
is calculated according to targeted value property. In our experiment, we rewarded the molecule made
by the agent according to a difference between the partition coefficient, logP, of the molecule and a
targeted value.

2 Previous work

The application of machine learning to molecule generation has been amply researched in the past
couple of years. However, to the best of our knowledge, only Zhou et al [13|] proposed a method that
is data-free. They suggested to use DQN to build molecule, although they incorporated chemistry
domain knowledge in their model, which can bias the molecule generation.

We can categorize other previous approaches by the representation they are using: the graph-based
representations [[8-10] and the SMILES-based representations [4(7}/11]]. Intuitively, it seems more
natural to treat molecules as graphs. However, none of the methods using graphs are able to integrate
the stereochemistry and the chirality within their representation.

Contrarily, SMILES-based approaches are able to encode both stereochemistry and chirality. Nev-
ertheless, generating valid SMILES requires the algorithm to learn the SMILES’ grammar first.
To minimize this problem, Kusner et al proposed to use parse-trees [7]. More recently Krenn et
al [2]] proposed a new representation called SELFIES that is able to directly translate into a valid
molecule. Not only this new representation is more robust than the SMILES, but it also improves the
performance of the model since it doesn’t have to learn any grammar.

3 Proposed method

Our method consists of casting the molecule generation process as a Markov decision process
(MDP) [14]] in order to use deep reinforcement learning. A Markov decision process is a decision-
making process where an agent sequentially interacts with an environment £. At each time step, the
agent selects an action a; and the environment respond by presenting a new state s;. Additionally to
this state, the environement also emits a reward r; that quantifies how good the action taken was. The
goal of the agent is to maximize the reward over time.

Q-learning is a value-based method [15]]. Instead of directly trying to find the optimal policy , it
estimates the optimal value function Q* (s, a) which can be defined as

T

Qr(s,a) = max,E Z’ykftrﬂst =s,a;=a,T
k=t

Using Bellman equation, and assuming the optimal value Q*(s’, a’) for the next step is known, we
can rewrite the previous equation as

QL (s,a) = Eyg [r + ymax, Q* (s, a’)|s, a] .

However, it is not possible to directly compute a tabular version of the Q-function due to the size
of the action and states space. Fortunately, Q*(s,a) can be approximated using a parametrized
value function Q(s, a; #) where 6 refers to the parameters of the model that defines the Q-values.
In DQN [[1]], a neural network is used to estimate this value function. This network is trained by
minimising the following loss:

Lz(el) = Es,aNp(s,a)[(yi - Q(87 a; 91))2]

where y; = By g [r + ymax, Q(s',a’;0,-1)|s,a] and p(s,a) is a probability distribution over
sequence of states s and actions s. This loss can be differentiated according to the model parameters
0 hence stochastic gradient descent can be used conveniently to optimize the network.



To prevent instabilities during the training, Mnih et al. [1]] replaced Q (s, a’;0;_1) by Q(s',a’; 0;)
where 0; is only updated to 0; every T iterations.

3.1 Environment

Our environment emits observations consisting of a SELFIES string. At the beginning of an episode,
the observation is initialized to be a single symbol corresponding to a carbon atom [C]. To interact
with the environment, the agent has to provide an index and an action. The index corresponds to the
position where the action will take place in the string. The action can either be to change the selected
symbol to another one or to insert a new symbol at the position indicated by the index.

The environment uses the following SELFIES symbols:

[c], [=C], [#C], [0], [=0], [N]1, [=N], [#N], [F], [epsilomn], [Ringl], [Ring2],
[Branch1_1], [Branchl_2], [Branch1_3], [Branch2_1], [Branch2_2], [Branch2_3]

In total, there are 36 possible actions. An episode is finished after the agent took an arbitrary number
of step, which we set to 64.

3.2 Model

The model architecture corresponds to the encoder of a Transformer [[16]]. This architecture has now
become mainstream, thus we will omit an exhaustive model description here. Our implementation
uses PyTorch [17] and is largely based on a blog post [[18]]. The notable difference between the
original model and ours is the size: we used only 2 layers of attention of size 128, with 4 attention
heads and an inner layer of the point-wise feedforward of 256.

The Transformer encoder outputs a representation for each token of the input. During training, a
token of the representation is randomly selected and an additional linear transformation is performed
giving a single output for each action.

3.3 Training

We trained the agent for 1500 episodes on a single GPU with a learning rate of 0.0001. We used
experience replay with a memory large enough to contain the entirety of the training sequence and
an e-greedy policy with e decaying exponentially between 1 and 0.001. We sampled batch from the
memory of size 64. The reward discount v was set to 0.4. We updated the target network every 10
episodes. Training time is notably short and generally falls to about one hour.

3.4 Reward function

The reward is a function of the distance d between the target logP p, and the current logP p. We
used the partition coefficient logP, connected to the solvability of the molecule, as it can be easily
computed for any molecule [[19] using RDKit [20]]. The reward was given at each time step.

4 Results and discussion

shows that the agent is able to learn how to generate molecules with a particular target of
logP. In this particular example, the target logP was set to 5. Similar results were obtained with
targeted logP values ranging between -5 to 20.

The agent quickly learned to produce plausible structures for molecules as shown on the right of
Moreover, we noticed the generation of rings occurred naturally in the molecule generated,
which is not the case of other approaches [4] that have an additional term in their reward function
accounting rings.

This approach opens up to a large number of possible experiments: we could constraints part of the
substructure and optimize the rest of the structure to reach a particular value of logP. We could also
have the model interacting with a chemist that could choose parts of the index and action to be taken.
By design, the agent and environment are flexible enough to allow that.



400 1 ZANAA Ay
NH——

300

Episode 87, LogP -0.17
200

Reward

Episode 1500, LogP 4.94
1004

—1004

0 200 400 600 800 1000 1200 1400 Episode 184, LogP 3.26

Episode

Figure 1: Reward per episode (left) and depiction of some molecules generated (right). The results
are averaged over 5 runs. The line represents the mean value of the runs and the shaded area is the
standard deviation. A Savitzky-Golay filter has been applied to both mean and standard deviation
with a window-length of 7.

5 Conclusion

In this paper, we present a new bias and data-free method that trains an agent to generate molecules
that have specific property value. As we do not use any data, it is not bound to any domain in specific
and can be used for any kind of property that we can compute. Moreover, our method is fast and uses
little computational resources: it produces molecules with targeted property value within an hour
using a single GPU.

To explore an even wider area of the chemical space, one could combine the current algorithm with
curiosity or other intrinsic rewards [211[22] to encourage the agent to efficiently explore the chemical
space.

References

[1] Mnih, V. et al. Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602 [cs] (2013).
URL http://arxiv.org/abs/1312.5602, ArXiv: 1312.5602.

[2] Krenn, M., Hise, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. SELFIES: a robust
representation of semantically constrained graphs with an example application in chemistry.
arXiv:1905.13741 [physics, physics:quant-ph, stat] (2019). URL http://arxiv.org/abs/
1905.13741. ArXiv: 1905.13741.

[3] Weininger, D. SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. Journal of Chemical Information and Computer Sciences 28,
31-36 (1988). URL https://pubs.acs.org/doi/abs/10.1021/ci00057a005.

[4] Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci-
ence Advances 4, eaap7885 (2018). URL https://advances.sciencemag.org/content/
4/7/eaap7885.

[5] Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L. & Aspuru-Guzik, A. Optimizing distri-
butions over molecular space. An Objective-Reinforced Generative Adversarial Network for
Inverse-design Chemistry (ORGANIC) (2017). URL https://chemrxiv.org/articles/
ORGANIC_1_pdf/5309668.

[6] GOomez-Bombarelli, R. ef al. Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Central Science 4, 268-276 (2018). URL https://pubs,
acs.org/doi/10.1021/acscentsci.7b00572.

[7] Kusner, M. J., Paige, B. & Hernandez-Lobato, J. M. Grammar Variational Autoencoder.
arXiv:1703.01925 [stat] (2017). URL http://arxiv.org/abs/1703.01925, ArXiv:
1703.01925.


http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1905.13741
http://arxiv.org/abs/1905.13741
https://pubs.acs.org/doi/abs/10.1021/ci00057a005
https://advances.sciencemag.org/content/4/7/eaap7885
https://advances.sciencemag.org/content/4/7/eaap7885
https://chemrxiv.org/articles/ORGANIC_1_pdf/5309668
https://chemrxiv.org/articles/ORGANIC_1_pdf/5309668
https://pubs.acs.org/doi/10.1021/acscentsci.7b00572
https://pubs.acs.org/doi/10.1021/acscentsci.7b00572
http://arxiv.org/abs/1703.01925

[8] Jin, W,, Barzilay, R. & Jaakkola, T. Junction Tree Variational Autoencoder for Molecular Graph
Generation. In arXiv:1802.04364 [cs, stat] (2018). URL http://arxiv.org/abs/1802,
04364, ArXiv: 1802.04364.

[9] De Cao, N. & Kipf, T. MolGAN: An implicit generative model for small molecular graphs.
arXiv:1805.11973 [cs, stat] (2018). URL http://arxiv.org/abs/1805.11973. ArXiv:
1805.11973.

[10] You,]J., Liu, B., Ying, Z., Pande, V. & Leskovec, J. Graph Convolutional Policy Network for
Goal-Directed Molecular Graph Generation. 12 (2018).

[11] Stahl, N., Falkman, G., Karlsson, A., Mathiason, G. & Bostrom, J. Deep Reinforcement
Learning for Multiparameter Optimization in de novo Drug Design. Journal of Chemical
Information and Modeling 59, 3166-3176 (2019). URL https://doi.org/10.1021/acs,
jcim.9b00325.

[12] Caliskan, A., Bryson, J. J. & Narayanan, A. Semantics derived automatically from language
corpora contain human-like biases. Science 356, 183—186 (2017). URL https://science,
sciencemag.org/content/356/6334/183,

[13] Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of Molecules via Deep
Reinforcement Learning. Scientific Reports 9, 1-10 (2019). URL https://www.nature,
com/articles/s41598-019-47148-x.

[14] BELLMAN, R. A Markovian Decision Process. Journal of Mathematics and Mechanics 6,
679-684 (1957). URL https://www. jstor.org/stable/24900506.

[15] Watkins, C. Learning from delayed rewards. Ph.D. thesis, King’s College, Cambridge (1989).
[16] Vaswani, A. et al. Attention is All you Need 11 (2017).

[17] Paszke, A. et al. Automatic differentiation in PyTorch (2017). URL https://openreview,
net/forum?id=BJJsrmfCZ.

[18] Rush. The Annotated Transformer (2018). URL http://nlp.seas.harvard.edu/2018/
04/03/attention.htmll

[19] Wildman, S. A. & Crippen, G. M. Prediction of Physicochemical Parameters by Atomic

Contributions. Journal of Chemical Information and Computer Sciences 39, 868—873 (1999).
URL https://doi.org/10.1021/ci9903071

[20] Greg, L. RDKit. URL http://www.rdkit.org/.

[21] Pathak, D., Agrawal, P., Efros, A. A. & Darrell, T. Curiosity-Driven Exploration by Self-
Supervised Prediction. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 488-489 (IEEE, Honolulu, HI, USA, 2017). URL http://ieeexplore!
ieee.org/document/8014804/|

[22] Burda, Y. et al. Large-Scale Study of Curiosity-Driven Learning 15 (2019).


http://arxiv.org/abs/1802.04364
http://arxiv.org/abs/1802.04364
http://arxiv.org/abs/1805.11973
https://doi.org/10.1021/acs.jcim.9b00325
https://doi.org/10.1021/acs.jcim.9b00325
https://science.sciencemag.org/content/356/6334/183
https://science.sciencemag.org/content/356/6334/183
https://www.nature.com/articles/s41598-019-47148-x
https://www.nature.com/articles/s41598-019-47148-x
https://www.jstor.org/stable/24900506
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://doi.org/10.1021/ci990307l
http://www.rdkit.org/
http://ieeexplore.ieee.org/document/8014804/
http://ieeexplore.ieee.org/document/8014804/

	Introduction
	Previous work
	Proposed method
	Environment
	Model
	Training
	Reward function

	Results and discussion
	Conclusion

