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Abstract

We introduce a general method for optimizing real-space renormalization-group
transformations to study the critical properties of a classical system. The scheme
is based on minimizing the Kullback-Leibler divergence between the distribution
of the system and the normalizing factor of the transformation parametrized by
a restricted Boltzmann machine. We compute the thermal critical exponent of
the two-dimensional Ising model using the trained optimal projector and obtain a
very accurate thermal critical exponent yt = 1.0001(11) after the first step of the
transformation.

1 Introduction

Deep learning (DL) [1] has yielded impressive results in difficult machine learning tasks and various
fields of physics [2, 3]. Despite its success, theoretical understanding of the reason behind the
surprising effectiveness of DL is still lacking. Although a connection between the renormalization
group (RG) and the deep neural networks has been established [4], it is desirable to construct a
scheme to enable learning in the RG procedure in order to extract useful information, such as the
critical exponents.

Monte Carlo renormalization group (MCRG) [6] is a promising computational scheme for the
real-space renormalization group (RSRG). The major source of systematic errors in the MCRG
calculations is the lack of convergence due to slow approach to the fixed point. Attempts have been
made to introduce variational parameters into the RG transformations with an optimal criterion to
bring the fixed point closer to the nearest-neighbor model [7]. The interpretation of why such proposal
works, however, remains controversial [8].

In this paper, we propose a general method for optimizing RSRG transformation through divergence
minimization using neural network. In our approach, the projection operator is parametrized with
a restricted Boltzmann machine and the parameters are chosen to minimize the Kullback-Leibler
(KL) divergence between the distribution of the system and the normalizing factor of the projection
operator.

2 Related Work

Metha and Schwab [4] established an exact mapping between the variational renormalization group [9]
and the deep neural networks based on RBM. The authors then applied deep learning techniques
to numerically coarse-grain the two-dimensional nearest-neighbor Ising model on a square lattice,
and showed the scheme corresponds to implementing a coarse-graining scheme similar to block spin
renormalization [9]. Therefore, they suggested there exists a connection between RG schemes and
deep learning algorithms that minimize the Kullback-Leibler (KL) divergence.
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On the other hand, Koch-Janusz and Ringel [10] claimed that training RBMs by minimizing the KL
divergence does not perform RG. Instead, they proposed an information-theoretic characterization
scheme that maximizes the real-space mutual information (RSMI), which is capable of generating
samples of the coarse-grained system. After several RG transformations, they were able to extract
the correlation length critical exponent ν = 1.0± 0.15(yt = 1/ν = 1.0± 0.15). We note, however,
although the RSMI algorithm was used to generate a sequence of configurations, they did not use the
standard MCRG technique [6] to extract quantitative results from these configurations.

In our work, we demonstrate that applying divergence minimization in training RBM can generate an
optimal RG transformation that filters out long-range fluctuations.

3 Optimal Criterion

A generic lattice-model Hamiltonian has the form

H(σ) =
∑
α

KαSα(σ), (1)

where the interactions Sα are combinations of the original spins σ labeled by α and the Kα are the
corresponding coupling constants. Consider a generic RG transformation

exp[H′(µ)] =
∑
σ

∏
α

Pα(µα, σ) exp[H(σ)], (2)

with a parametrized projection operator of the form

Pα(µα, σ) =
1

Yα
exp

{
µα
∑
i

Wiασi

}
, (3)

where the normalization factor is

Yα = 2 cosh

{∑
i

Wiασi

}
. (4)

Here µα are the renormalized spins of the renormalized HamiltonianH′(µ). The optimal criterion
for choosing the variational parameters Wiα will be described in the following section. In particular,
if Wiα are set to infinity in a local block of spins and zero otherwise, we have the usual majority-rule
transformation [11].

To determine the critical exponents, we need to calculate the derivatives of the transformation,

T
(n+1)
αβ ≡ ∂K

(n+1)
α

∂K
(n)
β

, (5)

which is given by the solution of the linear equation [6]

∂ 〈S(n+1)
γ 〉

∂K
(n)
β

=
∑
α

∂ 〈S(n+1)
γ 〉

∂K
(n+1)
α

∂K
(n+1)
α

∂K
(n)
β

. (6)

Here 〈S(n)
γ 〉 is the expectation of the spin combinations at the n-th RG iterations.

To motivate the optimal criterion for choosing the variational parameters, we shall recall the heuristic
argument of why DL [1] works so well. It is believed that a RBM [12],

p(µ, σ) =
1

Z
exp

{∑
iα

Wiασiµα

}
, (7)

parametrized by weights Wiα with hidden variables µα and visible variables σi, works to extract
feature distribution p′(µ) from the data distribution p(σ) through

p′(µ) =
∑
σ

p(µ|σ)p(σ), (8)
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Figure 1: Machine representation of the optimal projection operator for a 2D Ising model. We show
the feature maps for the 32× 32 Ising model at the critical temperature. From left to right we show
the development of the feature map as the training progress (feature maps shown are at the training
epoch of 1, 3, 5 and 50). The feature maps act as effective filters on the spin configurations, capturing
the most important correlations.

where p(µ|σ) ≡ p(σ, µ)/
∑
µ p(σ, µ) is the conditional distribution of the hidden variables given

the values of the visible variables. In this scheme, the RBM parameters are chosen to minimize the
Kullbach-Leibler (KL) divergence between the data distribution p(σ) and the marginal distribution∑
µ p(µ, σ)

D

(
p(σ)

∥∥∥∥∥∑
µ

p(µ, σ)

)
, (9)

where the KL divergence is defined as D(p‖q) =
∑
σ p(σ) log[p(σ)/q(σ)] for two discrete distri-

bution p(σ) and q(σ). The KL divergence D(p‖q) is always greater or equal to zero. The equality
holds when the two distributions are the same, i.e., p(σ) = q(σ) for all values of σ. The hope is that
the machine will use the hidden variables to extract meaningful features from the data [13].

For this reason, we identify the feature-extracting conditional distribution p(µ|σ) with our
parametrized projection operator P(µ, σ) =

∏
α Pα(µα, σ). A sufficient condition is to identify

the log-linear part
∑
iαWiασiµα in the RBM to that in the parametrized projection operator, and

associate the hidden and visible variables with the renormalized and original spins, respectively, and
correspond the marginal distribution

∑
µ p(µ, σ) to the normalizing factor

∏
α Yα. In analogy to

the RBM unsupervised learning, we propose an optimal criterion by minimizing the KL-divergence
between the distribution of the system and the normalizing factor of the projection operator,

D

(
1

Z
exp[H(σ)]

∥∥∥∥∥∏
α

Yα

)
. (10)

The optimization problem is achieved in the stochastic setting where we use machine learning and
contrastive divergence algorithms.

4 Results

To validate our scheme, we consider the problem of finding the thermal critical exponent of the Ising
model. The Hamiltonian is

H(σ) = KnnSnn = Knn

∑
〈ij〉

σiσj , (11)

where σi = +1 or −1 and Knn is the nearest-neighbor coupling. In the following we consider a two
dimensional lattice of size 32× 32 with periodic boundary conditions.

We prepare a data set with 104 binary spin configurations sampled at the critical temperature. We
update the parameters with contrastive divergence CD3 and with an adaptive variant of stochastic
gradient descent method called ADAM [14]. The learning rate is initially set to η = 10−3 and decays
during learning. A square root decay is applied to the initial learning rate to reach a finial value of
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Figure 2: Thermal critical exponents yt over training steps on a 32 × 32 lattice for the first step
of renormalization. The red (lower) dotted line is the corresponding result yt = 0.967(3) for the
majority-rule transformation [11] and the black (upper) dotted line is the exact value of yt = 1.

Table 1: MCRG estimates for the thermal critical exponents of the 2D Ising model from a simu-
lation on a 32× 32 lattice using our optimal projection operator as compared to the majority-rule
transformation. Nr is the number of RG steps and Nc is the number of couplings included in the
analysis.

Nr Nc optimal majority Nr Nc optimal majority

1 1 0.9217(09) 0.904(1) 2 1 0.9281(08) 0.953(2)
2 0.9910(08) 0.966(2) 2 0.9875(08) 0.998(2)
3 0.9971(09) 0.968(2) 3 0.9977(08) 1.000(2)
4 1.0004(09) 0.968(2) 4 1.0020(10) 0.998(2)
5 1.0005(10) 0.968(3) 5 1.0032(11) 0.997(2)
6 1.0009(10) 0.968(3) 6 1.0018(10) 0.997(2)
7 1.0001(11) 0.967(3) 7 1.0016(10) 0.997(3)

10−4 at the 25th epoch and the rate stays constant for the rest of 25 epochs. The minibatch contains
10 samples and the parameters are initialized uniformly around zero. Seven coupling terms were
chosen according to Ref. [11] for the MCRG analysis.

In Fig. 1 we show the optimal machine structure of the projection operator learnt on the Ising model
with a filter size of 8× 8 and with imposed translational symmetries. We find that the filter learns
localized feature which is in agreement with the conventional wisdom that renormalized spins and
original spins which are close to one another should be coupled more strongly than others [15]. For
example, an extreme case of a localized machine is that of a 2× 2 filter with infinite weights, which
is equivalent to the typical majority-rule transformation [11]. The behavior of our learnt machine, on
the other hand, also shows non-local interactions.

In Fig. 2 we use our optimal machine to calculate the thermal critical exponent for the 32× 32 Ising
model as a function of the training steps for the first step of renormalization transformation. The data
used to compute the thermal exponenent is different from that used in training and consists of 5× 104

samples. The exponent converges to the exact value (black dashed horizontal line) upon increasing
training steps. The most striking result is that although the projection operators are learnt without
any prior knowledge of the system, they are able to generate a renormalization transformation such
that the exponent approaches very close to the exact value after the first step of the transformation.

As the data in Table 1 indicates, the optimization performs rather well. The first RG iteration generates
an exponent of yt = 1.0001(11) which is within the statistical error of the exact value, and the second
iteration generates yt = 1.0016(10) which are close to the the exact value. The data consists of 106
samples which is drawn independently from the training data set. It is surprising that the machine
trained on such small training data of only 104 examples is able to generalize well and compute
statistics based on a data set of 106 samples. Table 1 also contains values computed with majority-rule
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transformation for comparison [11], giving yt = 0.967(3) and yt = 0.997(3) at the first and second
RG iteration respectively.

5 Conclusions

We have parametrized our projection operator as an RBM to perform Monte Carlo renormalization
group. The optimal criterion for choosing the parameters is proposed to minimize the KL-divergence
between the physical distributions and the normalizing factors of the projection operators. It is shown
that the set-up is completely equivalent to learning with an RBM.

Spin samples of 2D Ising model produced by Monte Carlo were used to train the machine. Once
trained, the machine is used to perform Monte Carlo renormalization group analysis and evaluate
critical exponents. We show that the trained projection operator is optimal in that it faithfully
reproduces the known exact thermal critical exponent within statistical error at the first step of
renormalization transformation.

Our results demonstrate that the divergence minimization criterion may produce optimal convergence
in the Monte Carlo renormalization group and may serve as a tool for more challenging problem
such as three-dimensional Ising model where the approach to the fixed point upon renormalization is
known to be slow. Furthermore, our work may provide a statistical-mechanical point of view to the
question of why DL works so well.
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