
Conservation Law Estimation by Extracting the
Symmetry of a Dynamical System Using a Deep

Neural Network

Yoh-ichi Mototake∗
The Institute of Statistical Mathematics

Tachikawa, Tokyo 190-8562, Japan.
mototake@ism.ac.jp

Abstract

As deep neural networks (DNN) have the ability to model the distribution of
datasets as a low-dimensional manifold, we propose a method to extract the co-
ordinate transformation that makes a dataset distribution invariant by sampling
DNNs using the replica exchange Monte-Carlo method. In addition, we demon-
strate that the canonical transformation that makes the Hamiltonian invariant (a
necessary condition for Noether’s theorem) and the symmetry of the manifold
structure of the time series data of the dynamical system are related. By inte-
grating this knowledge with the method described above, we propose a method to
estimate the conservation laws from the time-series data. Furthermore, we verified
the efficiency of the proposed methods in primitive cases.

1 Introduction

Recently, Deep Neural Networks(DNN) models with very high performance have been devel-
oped in the fields of image classification[21, 40, 41], time series recognition[46, 14, 23], image
generation[13, 20], and reinforcement learning[39, 24]. And many study applied the DNN to physi-
cal data analysis, such as phase estimation in spin system[31, 30, 4, 8, 7, 43, 37, 45, 48], gravity wave
detection[12, 11], pre-processing and classification of observed data of astrophysics[10], construct-
ing the generative model[6, 9, 34, 33] or classification model[1, 32] of trajectory data of calorimeter
in particle collider, detection models of topological structure or anomalous were also constructed
for the trajectory data of calorimeter, estimate the mapping function of anti-de Sitter/conformal field
theory correspondence[15], or estimating the contraction model of time series data of non-linear
dynamics[25, 36, 42, 22]. These studies worked very well in terms of classification, regression or
data generation. However, few studies exist on the extraction of physical knowledge from these
DNNs, such as conservation laws or order parameters, to represent the system property, because it is
difficult to analyze the DNN, which is a non-linear mapping function containing many parameters.
Some studies attempted to extract physical knowledge from the DNN; however, they were limited to
the indirect analysis of the activation pattern of the hidden layer units of the DNN or the parameter
patterns under the linearly approximated[7, 43, 37].

Several studies[19, 16, 3, 2, 35, 26] have suggested that deep neural networks (DNNs) have the
ability to model the distribution of datasets as manifolds and embed the manifolds into a low-
dimensional Euclidean space. From this perspective, the mapping function of a DNN is considered
as a representation of data manifolds. Studies that applied DNN to physics data employed the time
series data of the phase space composed of position and momentum[47, 25, 36, 42, 22] or the spin
system data of the configuration space[31, 30, 4, 8, 7, 43, 37, 45, 48]. In such a dataset, the manifold
structure (which implies that the system has a small degree of freedom) can be constructed by phys-
ical constraints, such as a conservation law. In other words, the manifold structure modeled by the
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DNN can represent the conservation law or order of the system. In addition, in physics, Noether’s
theorem connects the symmetry of the Hamiltonian and the conservation law. In this research, based
on the assumption that the symmetry of the Hamiltonian system and that possessed by the time-
series data of the dynamical system are related, we propose a method for estimating the symmetry
of the data manifold modeled by a deep auto encoder[17], and determine the conservation laws of
the system. We applied the proposed method to three datasets corresponding to the O(2), SO(2), and
T(1) symmetries. The datasets of the symmetries T(1) and SO(2) correspond to the time series data
of constant velocity linear motion and the central force potential dynamical system, respectively.
As a result, the proposed method correctly estimated the O(2), SO(2), and T(1) symmetries, and
directly realized the estimation of the conservation law of momentum and angular momentum from
the time series data.

2 DNN and the data manifold

A manifold is a space constructed by continuously pasting Euclidean spaces called a tangent space.
An approximate example of a manifold is the Earth’s surface. We consider the Earth’s surface as a
lamination of a map that is a two-dimensional Euclidean space. Some well-trained DNNs have the
ability to model a distribution of the training dataset as a manifold. In this paper, we refer to the
manifold modeling the data distribution by a DNN as “data manifold."

We explain how a DNN models manifolds, using one of the simplest DNN cases. Addition-
ally, we use a three-layer DNN, for which the input is of din-dimension, hidden layer is of
dh(> din) dimension, and output is of dout(< din)-dimension. The mapping function F(x) =
(F1(x), F2(x), · · · , Fdout(x)) of the DNN is defined as F(x) = whh = whf(winx), where
h = (h1, h2, · · · , hdh

) is the dh-dimensional output of the hidden layer. We define f(·) as
f(winx) = (f1, f2, · · · , fdh

), fj = f
(∑din

i

(
win

ij xi

))
, where f is called the activation function.

Figure 1: Embedding process

Usually, the sigmoid function or the ReLU function is used as the
activation function. These activation functions are constructed
using linear and flat domains. Based on these properties of the
activation function, fj maps the input sub-space related to the lin-
ear domain of the activation function to a one-dimensional space
to align the vector (w0j , w1j · · · , wdinj). If there are pout num-
ber of fjs sharing the same input subspace, they define the pout
dimensional sub-hyper-plane. The DNN models the data distri-
bution by continuously pasting these sub-hyper-planes as if they
were tangent space of a manifold. In other words, the DNN em-
beds the input space in the output space by pasting the sub-hyper-
planes and compresses the tangent direction of these sub-hyper-planes (Fig. 1).

3 Noether’s theorem and a data manifold of time series data

Noether’s theorem connects the continuous symmetry of the Hamiltonian system and its conser-
vation law[29]. Considering the Hamiltonian systems in 2-d dimensional phase space (q, p), let
the system’s Hamiltonian be H(q, p). Assuming that the Hamiltonian H(q, p) and the canonical
equations (equations of motion), ∂H(q,p)

∂q = −ṗ and ∂H(q,p)
∂p = q̇, are invariant for infinitesimal

transformation, (t′, q′j , p
′
j) = (t + δt, qj + δqj , pj + δpj), where j = 1 ∼ d. Then, based on

Noether’s theorem, the conserved value G satisfies the following equation:

(δqj , δpj) =

(
∂Gδ

∂pj
,−∂Gδ

∂qj

)
. (1)

The invariant transformation of the Hamiltonian system is given as (Q(q, p),P(q, p))t = Â(θ) ·
(q, p)t + b̂(θ), where θ is a transformation parameter. By the Tailor expansion of Â(θ) and b̂(θ)
about θ, the infinitesimal transformation is acquired as (δqj , δpj) = ε∂Â(θ)

∂θ |θ=0⃗ + ε∂b̂(θ)
∂θ |θ=0⃗,

where ε << 1, Â(θ = 0⃗) = I, and b̂(θ = 0⃗) = 0⃗. In the following, we consider only Â(θ) · (q, p)t

for simplicity; however, it is easy to extend the discussion to Â(θ) · (q, p)t + b̂(θ).
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Next, we explain the relation between such infinitesimal transformation and the time-series data of
the dynamical system in the phase space (q, p). The coordinate transformation Â(θ), which does
not change the Hamiltonian, satisfy the condition H ′(q, p) := H(Â−1(θ) · (q, p)) ≡ H(q, p) ⇔
∀(q, p), H ′(q, p) = H(q, p) ⇔ ∀E, {q, p | H(q, p) = E} = {q, p | H ′(q, p) = E} ⇔
∀E, {q, p | H(q, p) = E} = {Q,P | H(q, p) = E}, where we assume that Â(θ) is a regular matrix.
The energy E is discretized at infinitesimal intervals, where each discretized energy is defined as Ei.
We define Âi(θi), which satisfies {q, p | H(q, p) = Ei} = {Q,P | H(q, p) = Ei}. Then, invariant
transformation Â(θ) =

∩
i Âi(θi). This shows that the invariance that holds for a certain energy Ei

is a candidate for the invariance of the whole system. In the same manner, by discretizing the time,
the transformation that does not change the equation of motion is satisfied by the following condi-
tions: ∀(q(t), p(t)), {q(t+∆t), p(t+∆t) | ∂H(q(t),p)(t)

∂q(t) = − (p(t+∆t)− p(t)) , ∂H(q(t),p(t))
∂p(t) =

q(t+∆t)−q(t)} = {Q(t+∆t),P(t+∆t) | ∂H(q(t),p)(t)
∂q(t) = − (p(t+∆t)− p(t)) , ∂H(q(t),p(t))

∂p(t) =

q(t + ∆t) − q(t)}. Therefore, candidates for transformation that simultaneously make the equa-
tion of motion and the Hamiltonian invariant are obtained, which also satisfy the following condi-
tions: {q(t + ∆t), p(t + ∆t), q(t), p(t) | ∂H(q(t),p)(t)

∂q(t) = − (p(t+∆t)− p(t)) ,H(q(t), p(t)) =

Ei,
∂H(q(t),p(t))

∂p(t) = q(t + ∆t) − q(t)} = {Q(t + ∆t),P(t + ∆t),Q(t),P(t) | H(q(t), p(t)) =

Ei,
∂H(q(t),p(t))

∂q(t) = − (p(t+∆t)− p(t)) , ∂H(q(t),p(t))
∂p(t) = q(t+∆t)−q(t)}. Thus, a transformation

candidate that makes the Hamiltonian and the equation of motion invariant is obtained as the coordi-
nate transformation that creates the subspace S := {q(t+∆t), p(t+∆t), q(t), p(t) | ∂H(q(t),p)(t)

∂q(t) =

− (p(t+∆t)− p(t)) ,H(q(t), p(t)) = Ei,
∂H(q(t),p(t))

∂p(t) = q(t+∆t)−q(t)}, which are all possible
states of the dynamical system at Ei invariant. From observation or from computational simulation,
let there be finite time series data D that is a part of the subspace S. From D, we assume that the
subspace S can be approximated by the DNN as a manifold, in addition to assuming that the invari-
ant transformation Â(θ) is estimated by the symmetry of the manifold as modeled by the DNN. The
conservation laws obtained based on this assumption can easily be verified by confirming whether
the conserved value is invariant in the time-series data.

4 Method

4.1 Extracting the invariant transformation of a data manifold using the Monte Carlo
method

Figure 2: The proposed method.

From the discussion in Sec. 2, data points that are not
on the manifold in the input space are attracted to the
manifold (Fig. 1). If the data points are attracted once
to the manifold in the hidden layer, they continue to
exist on the manifold in the output F(x). Based on
this DNN property, we proposed a method for extract-
ing the symmetry of the data manifold using a deep
autoencoder[17]. The deep autoencoder is a model
that compresses the input space to a low-dimensional
hidden layer, and uncompresses the layer to the out-
put space at the same dimension as the input space. In
the uncompressing process, only the sub-space of the
input space around the data manifold is recovered be-
cause of the DNN property. Based on this property, we can evaluate whether the translated dataset
distribution {A′(θ) · xi}Ni=1 is in the same sub-space of the data manifold or not (Fig. 2). Con-
cretely, the evaluation is performed using the squared root error between the input distribution
of the dataset and its mapped distribution. Esamp(A(θ) =

∑N
i=1 [A(θ) · xi − F(A(θ) · xi)]

2.
A smaller Esamp value implies that A(θ) is a more invariant transformation. Using the crite-
rion Esamp, we can estimate the invariant transformation Â(θ). The invariant transformation
is obtained by sampling the element ajk of matrix A(θ) following the probability distribution
P (a11, a12, a21, · · · , app) ∝ exp[− 1

2σ2Esamp(a11, a12, a21, · · · , app)], where p is a dimension of
the transformed space and σ is the standard deviation of the noise. To perform this sampling, we
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need to specify σ; however, it is difficult to specify σ in advance. In addition, the target distributions
in this study are supposed to be the global flat local minimum, because the same Esamp surface ex-
ists following the invariant transformation. Generally, such target distribution is difficult to sample.
Therefore, as a sampling method[18] that could solve these problems, we used the replica-exchange
Monte Carlo method. It performs efficient sampling using parallel sampling with different noise
intensities of σ, while exchanging noise intensity with each other. The parameters of the sampling
method were set to be the same as in previous studies[28, 27].

4.2 Estimating the infinitesimal transformation of symmetry from the sampling result

Finally, from the sampling result in Sec.4.1, we propose a method for estimating the infinitesimal-
transformation, which represents the invariance of the Hamiltonian and the equation of motion.
The continuous symmetry treated in Noether’s theorem forms a Lie group. Using the smooth param-
eter set θ = {θk}pk=1, the representation of the Lie group is expressed as Aij(θ) = aij(θ). A vector
defined by the elements of this transformation matrix is defined as A′(θ) = (a′1(θ), · · · , a′d′(θ)) =
(a11(θ), · · · , a1d(θ), a21(θ), · · · , a2d(θ), · · · , ad1(θ), · · · , add(θ)), where d′ = d2. Lie groups
correspond to p-dimensional differentiable manifolds and are constructed using the set of A′(θ) with
different θ. The implicit function representation of this manifold is defined as f1(a

′
1, · · · , a′d′) =

0 ∧ f2(a
′
1, · · · , a′d′) = 0 ∧ · · · fp(a

′
1, · · · , a′d′) = 0. What we wish to determine is the in-

finitesimal transformation, which corresponds to the tangent space of the manifold at position

I′ =

{
aij = 1 (i = j)

aij = 0 (i ̸= j)
. I′ is the representation of the unit matrix I in the A′(θ) space. We

estimate this tangent space from the sampling results obtained in Sec.4.1.

If the parameters of fk are defined as p parameters of subset A′, (b1, b2, · · · , bp) ⊂ A′, the Jacobi

matrix of fk, Jkl =
∂fk(a

′
1,··· ,a

′
d′ )

∂bl
, at I′ becomes non-singular. Then, based on the implicit function

theorem, variables other than (b1, b2, · · · , bp), {ck}d
′−p

k=1 ⊂ {A′∩{bl}pl=1}, can be expressed as ck =
gi(b1, · · · , bp). If the Jacobian at I′ is non-singular, as the necessary conditions of this simultaneous
equations, the equations representing the manifold around I′ can be decomposed into the following
d′ − p simultaneous equations:
h1(c1, b1, · · · , bp) = 0 ∧ h2(c2, b1, · · · , bp) = 0 ∧ · · · ∧ hd′−p(cd′−p, b1, · · · , bp) = 0. (2)

Differentiating these equations with respect to bl around point I′ yields d′ − p simultaneous partial
differential equations,

∂

∂bl
h1(c1, b1, · · · , bp)|A′=I′ = 0 ∧ · · · ∧ ∂

∂bl
hd′−p(cd′−p, b1, · · · , bp)|A′=I′ = 0. (3)

Solving this simultaneous partial differential equation gives the tangent vector of the manifold
around I′, which is an infinitesimal transformation of the bl.

When L sampling results D = {a′l
1 , a

′l
2 , · · · , a

′l
d′}Ll=1 are obtained with the sampling method ex-

plained in Sec. 4.1, we can obtain the simultaneous equations Eq. (2) by the following procedure.
First, the upper limit of the dimension pmax of the manifold of the transformation is estimated using
Principal Component Analysis and the‘‘ elbow” method[44]. Second, we extract one variable set
(b1, b2, · · · , bp′), where p′(≤ pmax). Using orthogonal distance regression[5], we regress Dk ≡
{ck, bl1, bl2, · · · , blp′}Ll=1 with an implicit polynomial function, f(ck, b

l
1, b

l
2, · · · , blp′ ;β, I, p′) =∑n

i0=0

∑n
i1=0 · · ·

∑n
ip′=0 Ii0i1i2···ip′βi0i1i2···ip′ c

i0
k bi11 bi22 · · · bip′p′ = 0, where β is the regression co-

efficients, and I is the indicator vector to determine whether the basis is selected or not. The indicator
vector I and the dimension of manifold p′ are determined using a model selection method, such as
the Bayesian information criterion(BIC)[38]. This gives the simultaneous equations Eq. (2). The
simultaneous differential equations are obtained from them. If the Jacobian matrix Jkl is singular,
the solution of this simultaneous equation diverges or becomes indefinite. In that case, the variable
set {bl1, · · · , blp′} is extracted again, and the same procedure is repeated.

5 Results and Discussion

We evaluate the proposed method using three cases: a) half sphere, b) two-dimensional center force
system, and c) one-dimensional constant velocity linear motion. Each model corresponded to O(2),
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SO(2), or T(1) symmetry. The dataset of the case a) (shown in Fig. 2) was used for verification
of the symmetry extraction ability of the proposed method described in Sec. 4.1. The dataset
of case b) was generated according to the Hamiltonian: H = p2

2 + 10 1
|x| to demonstrate that the

proposed method could estimate the angular momentum conservation law. The dataset of case c) was
generated based on H = p2

2 to demonstrate that the proposed method could estimate the momentum
conservation law. The data distribution space of b) and c) is (x(t + ∆t), p(t + ∆t), x(t), p(t)).
We limited the transformation matrix A(θ), leaving only the Euclidean space x active, such that(

x′
1

x′
2

)
= A(θ) ·

(
x1

x2

)
=

(
a11 a21
a12 a22

)(
x1

x2

)
. Then, the transformation of the momentum

space was represented as p′ = A(θ) · p. As a result, there were only four parameters aij to be
sampled. In the case of b), it was not possible to transform one orbit to another with same energy
and different long axis radii using such transformation. Therefore, the time-series data with radius 1
circular motion was used. The sampling results of aij are indicated in Figs. 3,4, and 5 as black dots.
In all three cases, the dimensions of the manifold representing each Lie group was estimated to be 1
using PCA and the‘‘ elbow” method. In the figures, the red curve represents the curve fitted by the
selected model based on BIC. The fitting results of the selected models are described as follows: a)
[a211 +0.99a221 = 1, a211 + a212 = 1, a211 − a222 = 0, a221 − a212 = 0, a221 + a222 = 1, a212 + a222 = 1],
b) [a211 + 0.99a221 = 1, a211 + 0.98a212 = 1, a11 − a22 = 0, a21 + 0.99a12 = 0, a221 + 1.01a222 =
1.01, a212+1.02a222 = 1.02], c) [a−0.0b = 1.0], where the significant digits are two decimal points.
Between the a) and b) cases, there were differences of the selected polynomial models in the a11-
a22 and a21-a12 spaces. The differences should represent that there is mirror symmetry. From these
fitting results, we could estimate the conservation laws. In the case of b), the simultaneous partial
differential equations Eq.(3), where bl = a12, were obtained from the fitting results and solutions.
We obtained the infinitesimal translation: δx⃗ = ε

(
−0.98a12

a11

∣∣∣
A=I

, 1,−1/0.99, −0.99a12

a21

∣∣∣
A=I

)
x⃗ =

(0, ε,−1.01ε, 0)x⃗, δp⃗ = δ(0, ε,−1.01ε, 0)p⃗. By substituting this into Eq. (1) and solving for
it, the conserved value was estimated to be Gδ = 1.01ε(x1p2 − x2p1). This result represents
the conservation law of angular momentum. In the c) case, in the same manner, we obtained the
conservation law of momentum p.

The proposed method may have the potential to estimate the conservation laws of physical systems
for which it has been difficult to obtain the conservation law analytically, such as a Hamiltonian with
unknown symmetry and the symmetry of the effective Hamiltonian in a many-body system.

Figure 3: O(2) case Figure 4: SO(2) case
Figure 5: T(1) case

References
[1] Pierre Baldi, Kevin Bauer, Clara Eng, Peter Sadowski, and Daniel Whiteson. Jet substruc-

ture classification in high-energy physics with deep neural networks. Physical Review D,
93(9):094034, 2016.

[2] Ronen Basri and David Jacobs. Efficient representation of low-dimensional manifolds using
deep networks. arXiv preprint arXiv:1602.04723, 2016.

[3] Pratik Prabhanjan Brahma, Dapeng Wu, and Yiyuan She. Why deep learning works: A mani-
fold disentanglement perspective. IEEE transactions on neural networks and learning systems,
27(10):1997–2008, 2016.

[4] Peter Broecker, Juan Carrasquilla, Roger G Melko, and Simon Trebst. Machine learning quan-
tum phases of matter beyond the fermion sign problem. Scientific reports, 7(1):8823, 2017.

[5] Philip J Brown, Wayne A Fuller, et al. Statistical analysis of measurement error models and
applications: Proceedings of the AMS-IMS-SIAM joint summer research conference held June

5



10-16, 1989, with support from the National Science Foundation and the US Army Research
Office, volume 112. American Mathematical Soc., 1990.

[6] Federico Carminati, Gulrukh Khattak, Maurizio Pierini, Sofia Vallecor-safa, and Amir Farbin.
Calorimetry with deep learning: particle classification, energy regression, and simulation for
high-energy physics. In NIPS, 2017.

[7] Juan Carrasquilla and Roger G Melko. Machine learning phases of matter. Nature Physics,
13(5):431, 2017.

[8] Kelvin Ch ’Ng, Juan Carrasquilla, Roger G Melko, and Ehsan Khatami. Machine learning
phases of strongly correlated fermions. Physical Review X, 7(3):031038, 2017.

[9] Luke de Oliveira, Michela Paganini, and Benjamin Nachman. Learning particle physics by
example: location-aware generative adversarial networks for physics synthesis. Computing
and Software for Big Science, 1(1):4, 2017.

[10] Stanislav Fort. Towards understanding feedback from supermassive black holes using convo-
lutional neural networks. arXiv preprint arXiv:1712.00523, 2017.

[11] Timothy Gebhard, Niki Kilbertus, Giambattista Parascandolo, Ian Harry, and Bernhard
Schölkopf. Convwave: Searching for gravitational waves with fully convolutional neural nets.
In Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural
Information Processing Systems (NIPS), 2017.

[12] Daniel George and EA Huerta. Deep learning for real-time gravitational wave detection and
parameter estimation: Results with advanced ligo data. Physics Letters B, 778:64–70, 2018.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[14] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and
signal processing, pages 6645–6649. IEEE, 2013.

[15] Koji Hashimoto, Sotaro Sugishita, Akinori Tanaka, and Akio Tomiya. Deep learning and the
ads/cft correspondence. Physical Review D, 98(4):046019, 2018.

[16] GE Hinton and RR Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 2006.

[17] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

[18] Koji Hukushima and Koji Nemoto. Exchange monte carlo method and application to spin glass
simulations. Journal of the Physical Society of Japan, 65(6):1604–1608, 1996.

[19] Bunpei Irie and Mitsuo Kawato. Acquisition of internal representation by multi-layered per-
ceptrons. The Transactions of the Institute of Electronics, Information and Communication
Engineers D, 73(8):1173–1178, 1990.

[20] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[22] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear
embeddings of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

[23] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term mem-
ory networks for anomaly detection in time series. In Proceedings, page 89. Presses universi-
taires de Louvain, 2015.

6



[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[25] Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep dy-
namical modeling and control of unsteady fluid flows. In Advances in Neural Information
Processing Systems, pages 9258–9268, 2018.

[26] Yhoichi Mototake and Takashi Ikegami. The dynamics of deep neural networks. Proceedings
of the Twentieth International Symposium on Artificial Life and Robotics, 20, 2015.

[27] Yoh-ichi Mototake, Masaichiro Mizumaki, Ichiro Akai, and Masato Okada. Bayesian hamil-
tonian selection in x-ray photoelectron spectroscopy. Journal of the Physical Society of Japan,
88(3):034004, 2019.

[28] Kenji Nagata, Seiji Sugita, and Masato Okada. Bayesian spectral deconvolution with the ex-
change monte carlo method. Neural Networks, 28:82–89, 2012.

[29] AE Noether. Nachr kgl ges wiss göttingen. Math. Phys. KI II, 235, 1918.

[30] Tomi Ohtsuki and Tomoki Ohtsuki. Deep learning the quantum phase transitions in random
electron systems: Applications to three dimensions. Journal of the Physical Society of Japan,
86(4):044708, 2017.

[31] Tomoki Ohtsuki and Tomi Ohtsuki. Deep learning the quantum phase transitions in random
two-dimensional electron systems. Journal of the Physical Society of Japan, 85(12):123706,
2016.

[32] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. Survey of machine learning
techniques for high energy electromagnetic shower classification. In Proceedings of the Deep
Learning for Physical Sciences Workshop at the 31st Conference on Neural Information Pro-
cessing Systems (NIPS), 2017.

[33] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. Accelerating science with gen-
erative adversarial networks: an application to 3d particle showers in multilayer calorimeters.
Physical review letters, 120(4):042003, 2018.

[34] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. Calogan: Simulating 3d high
energy particle showers in multilayer electromagnetic calorimeters with generative adversarial
networks. Physical Review D, 97(1):014021, 2018.

[35] Salah Rifai, Yann N Dauphin, Pascal Vincent, Yoshua Bengio, and Xavier Muller. The mani-
fold tangent classifier. pages 2294–2302, 2011.

[36] Samuel H Rudy, J Nathan Kutz, and Steven L Brunton. Deep learning of dynamics and signal-
noise decomposition with time-stepping constraints. arXiv preprint arXiv:1808.02578, 2018.

[37] Hiroki Saito and Masaya Kato. Machine learning technique to find quantum many-body
ground states of bosons on a lattice. Journal of the Physical Society of Japan, 87(1):014001,
2017.

[38] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):461–
464, 1978.

[39] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[40] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

7



[41] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

[42] Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant sub-
spaces for dynamic mode decomposition. In Advances in Neural Information Processing Sys-
tems, pages 1130–1140, 2017.

[43] Akinori Tanaka and Akio Tomiya. Detection of phase transition via convolutional neural net-
works. Journal of the Physical Society of Japan, 86(6):063001, 2017.

[44] Magnus O Ulfarsson and Victor Solo. Dimension estimation in noisy pca with sure and random
matrix theory. IEEE transactions on signal processing, 56(12):5804–5816, 2008.

[45] Evert PL Van Nieuwenburg, Ye-Hua Liu, and Sebastian D Huber. Learning phase transitions
by confusion. Nature Physics, 13(5):435, 2017.

[46] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural ma-
chine translation system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[47] Kyongmin Yeo. Model-free prediction of noisy chaotic time series by deep learning. arXiv
preprint arXiv:1710.01693, 2017.

[48] Pengfei Zhang, Huitao Shen, and Hui Zhai. Machine learning topological invariants with
neural networks. Physical review letters, 120(6):066401, 2018.

8


