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Abstract

We introduce Quantum Graph Neural Networks (QGNN), a new class of quan-
tum neural network ansatze which are tailored to represent quantum processes
which have a graph structure, and are particularly suitable to be executed on
distributed quantum systems over a quantum network. Along with this general
class of ansatze, we introduce further specialized architectures, namely, Quantum
Graph Recurrent Neural Networks (QGRNN) and Quantum Graph Convolutional
Neural Networks (QGCNN). We provide three example applications of QGNNs:
learning Hamiltonian dynamics of quantum systems, learning how to create multi-
partite entanglement in a quantum network, and unsupervised learning for spectral
clustering.

1 Introduction

Variational Quantum Algorithms are a promising class of algorithms are rapidly emerging as a central
subfield of Quantum Computing [1, 2, 3]. Similar to parameterized transformations encountered
in deep learning, these parameterized quantum circuits are often referred to as Quantum Neural
Networks (QNNs). Recently, it was shown that QNNs that have no prior on their structure suffer
from a quantum version of the no-free lunch theorem [4] and are exponentially difficult to train via
gradient descent. Thus, there is a need for better QNN ansatze. One popular class of QNNs has been
Trotter-based [2, 5]. The optimization of these ansatze has been extensively studied in recent works,
and efficient optimization methods have been found [6] . On the classical side, graph-based neural
networks leveraging data geometry for have seen some recent successes in deep learning, finding
applications in biophysics and chemistry [7]. Inspired from this success, we propose a new class of
Quantum Neural Network ansatz which allows for both quantum inference and classical probabilistic
inference for data with a graph-geometric structure. In the sections below, we introduce the general
framework of the QGNN ansatz as well as several more specialized variants and showcase three
potential applications via numerical implementation.

2 Quantum Graph Neural Networks

Networked Quantum Systems Consider a graph G = {V, E}, where V is the set of vertices (or
nodes) and E the set of edges. We can assign a quantum subsystem with Hilbert spaceHv for each
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vertex in the graph, forming a global Hilbert spaceHV ≡
⊗

v∈V Hv . Each of the vertex subsystems
could be one or several qubits, a qudit, a qumode [8], or even an entire quantum computer.1 The
edges of the graph dictate the communication between the vertex subspaces: couplings between
degrees of freedom on two different vertices are allowed if there is an edge connecting them. This
setup is called a quantum network [9, 10] with topology given by the graph G.

General Quantum Graph Neural Network Ansatz The most general Quantum Graph Neural
Network ansatz is a parameterized quantum circuit on a network which consists of a sequence of Q
different Hamiltonian evolutions, with the whole sequence repeated P times:

UQGNN(η,θ) =

P∏
p=1

[
Q∏
q=1

e−iηpqĤq(θ)

]
, (1)

where the product is time-ordered [11], the η and θ are variational (trainable) parameters, and the
Hamiltonians Ĥq(θ) can generally be any parameterized Hamiltonians whose topology of interactions
is that of the problem graph:

Ĥq(θ) ≡
∑
{j,k}∈E

∑
r∈Ijk

WqrjkÔ
(qr)
j ⊗ P̂ (qr)

k +
∑
v∈V

∑
r∈Jv

BqrvR̂
(qv)
j . (2)

Here the Wqrjk and Bqrv are real-valued coefficients which can generally be independent train-
able parameters, forming a collection θ ≡ ∪q,j,k,r{Wqrjk} ∪q,v,r {Bqrjk}. The operators
R̂

(qv)
j , Ô

(qr)
j , P̂

(qr)
j are Hermitian operators which act on the Hilbert space of the jth node of the

graph. The sets Ijk and Jv are index sets for the terms corresponding to the edges and nodes,
respectively. To make compilation easier, we enforce that the terms of a given Hamiltonian Ĥq

commute with one another, but different Ĥqs need not commute.

In order to make the ansatz more amenable to training and avoid the barren plateaus/no free lunch
problem [4], we need to add some constraints and specificity. To that end, we now propose more
specialized architectures where parameters are tied spatially (convolutional) or tied over the sequential
iterations of the exponential mapping (recurrent).

Quantum Graph Recurrent Neural Networks (QGRNN) We define quantum graph recurrent
neural networks as ansatze of the form of (1) where the temporal parameters are tied between
iterations, ηpq 7→ ηq. In other words, we have tied the parameters between iterations of the outer
sequence index (over p = 1, . . . , P ). This is akin to classical recurrent neural networks where
parameters are shared over sequential applications of the recurrent neural network map. As ηq
acts as a time parameter for Hamiltonian evolution under Ĥq, we can view the QGRNN ansatz
as a Trotter-based [12, 11] quantum simulation of an evolution e−i∆Ĥeff under the Hamiltionian
Heff = ∆−1

∑
q ηqĤq for a time step of size ∆ = ‖η‖1 =

∑
q |ηq|. This ansatz is thus specialized

to learn effective dynamics on a graph. In Section 3 we demonstrate this by learning the effective
real-time dynamics of an Ising model on a graph using a QGRNN ansatz.

Quantum Graph Convolutional Neural Networks (QGCNN) Classical Graph Convolutional
neural networks rely on a key feature: that of permutation invariance. In other words, the ansatz
should be invariant under permutation of the nodes. This is analogous to translational invariance
for ordinary convolutional transformations. In our case, permutation invariance manifests itself as a
constraint on the Hamiltonian, which now should be devoid of local trainable parameters, and should
only have global trainable parameters. So the θ parameters become tied over indices of the graph:
Wqrjk 7→ Wqr and Bqrv 7→ Bqr. A broad class of graph convolutional neural networks we will
focus on is the set of so-called Quantum Alternating Operator Ansatze [5], the generalized form of
the Quantum Approximate Optimization Algorithm ansatz [2].

Quantum Spectral Graph Convolutional Neural Networks (qsgcnn) We can take inspiration
from the continuous-variable quantum approximate optimization ansatz introduced in [13] to create

1One may also define a Hilbert space for each edge and formHE ≡
⊗

e∈E He. The total Hilbert space for
the graph would then beHE ⊗HV . For the sake of simplicity and feasibility of numerical implementation, we
consider this to be beyond the scope of the present work.
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(1a) Top: Batch average infidelity (1 − F )
with respect to ground truth state sampled at
15 randomly chosen times. We see the initial
guess has a densely connected topology and
the QGRNN learns the ring structure of the
true Hamiltonian. Bottom: Ising Hamiltonian
parameters (weights & biases) on a color scale.

(1b) Left: Stabilizer Hamiltonian expectation and fidelity
over training iterations. A picture of the quantum network
topology is inset. Right: Quantum phase kickback test on
the learned GHZ state. We observe a 7x boost in Rabi oscil-
lation frequency for a 7-node network, thus demonstrating
we have reached the Heisenberg limit of sensitivity for the
quantum sensor network.

a variant of the QGCNN: the Quantum Spectral Graph Convolutional Neural Network (QSGCNN).
We show here how it recovers the mapping of Laplacian-based graph convolutional networks [14]
in the Heisenberg picture, consisting of alternating layers of message passing, node update, and
nonlinearities.

Consider an ansatz of the form from (1) with four different Hamiltonians (Q = 4) for a given
graph. First, for a weighted graph G with edge weights Λjk, we define the coupling Hamiltonian
as ĤC ≡ 1

2

∑
{j,k}∈E Λjk(x̂j − x̂k)2. The Λjk here are the weights of the graph G, and are not

trainable parameters. The operators denoted here by x̂j are quantum continuous-variable position
operators, which can be implemented via continuous-variable (analog) quantum computers [8] or
emulated using multiple qubits on digital quantum computers [15, 16]. After evolving by ĤC , which
we consider to be the message passing step, one applies an exponential of the kinetic Hamiltonian,
ĤK ≡ 1

2

∑
j∈V p̂

2
j . Here p̂j denotes the continuous-variable momentum (Fourier conjugate) of the

position, obeying the canonical commutation relation [x̂j , p̂j ] = iδjk. We consider this step as a node
update step. In the Heisenberg picture, the evolution generated by these two steps maps the position
operators of each node according to e−iγĤKe−iαĤC : x̂j 7→ x̂j + γp̂j − αγ

∑
k∈V Ljkx̂k, where

Ljk = δjk
(∑

v∈V Λjv
)
− Λjk is the Graph Laplacian matrix for the weighted graph G. We can

recognize this step as analogous to classical spectral-based graph convolutions. One difference to
note here is that momentum is free to accumulate between layers.

Next, we must add some non-linearity in order to give the ansatz more capacity.The next evolution is
thus generated by an anharmonic Hamiltonian ĤA =

∑
j∈V f(x̂j), where f is a nonlinear function

of degree greater than 2, e.g., a quartic potential of the form f(x̂j) = ((x̂j − µ)2 − ω2)2 for some
µ, ω hyperparameters. Finally, we apply another evolution according to the kinetic Hamiltonian.
These last two steps yield an update e−iβĤKe−iδĤA : x̂j 7→ x̂j + βp̂j − δβf ′(x̂j), which acts as a
nonlinear mapping. By repeating the four evolution steps described above in a sequence of P layers,
i.e.,

ÛQSGCNN(α,β,γ, δ) =

P∏
j=1

e−iβjĤKe−iδjĤAe−iγjĤKe−iαjĤC

with variational parameters θ = {α,β,γ, δ}, we then recover a quantum-coherent analogue of the
node update prescription of [14] in the original graph convolutional networks paper.

3 Applications & Experiments

Learning Quantum Dynamics with Quantum Graph Recurrent Neural Networks Learning
the dynamics of a closed quantum system is a task of interest for many applications [17], including
device characterization and validation. In this example, we demonstrate that a Quantum Graph
Recurrent Neural Network can learn effective dynamics of an Ising spin system when given access to
the output of quantum dynamics at various times.
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Figure 2: QSGCNN spectral clustering results for 5-qubit precision (left) with quartic double-well
potential and 1-qubit precision (right) for different graphs. Weight values represented as opacity,
output sampled node values as grayscale. Lower precision on the right allows for more nodes in the
simulation. The graphs displayed are the most probable (populated) configurations, and to their right
is the output probability distribution over potential energies. We see lower energies are most probable
and that these configurations have node values clustered.

Our target is an Ising Hamiltonian on a particular graph, Ĥtarget =
∑
{j,k}∈E JjkẐjẐk +∑

v∈V QvẐv +
∑
v∈V X̂j . We are given copies of a low-energy state |ψ0〉 as well as copies of

the state |ψT 〉 ≡ Û(T ) |ψ0〉 = e−iT Ĥtarget for some known but randomly chosen times T ∈ [0, Tmax].
Our goal is to learn the target Hamiltonian parameters {Jjk, Qv}j,k,v∈V by comparing the state
|ψT 〉 with the state obtained by evolving |ψ0〉 according to the QGRNN ansatz for a number
of iterations P ≈ T/∆ (where ∆ is a hyperparameter determining the Trotter step size). We
achieve this by training the parameters via Adam [18] gradient descent on the average infidelity
L(θ) = 1− 1

B

∑B
j=1 | 〈ψTj

|U jQGRNN(∆,θ) |ψ0〉〉 |2 averaged over batch sizes of 15 different times T .
The ansatz uses a Trotterization of a random densely-connected Ising Hamiltonian as its initial guess,
and successfully learns the Hamiltonian parameters within a high degree of accuracy as shown in
Fig. 1a.

Quantum Graph Convolutional Neural Networks for Quantum Sensor Networks Quantum
Sensor Networks are a promising area of application for the technologies of Quantum Sensing
and Quantum Networking/Communication [9, 10]. A common task considered where a quantum
advantage can be demonstrated is the estimation of a parameter hidden in weak qubit phase rotation
signals, such as those encountered when artificial atoms interact with a constant electric field of
small amplitude [10]. A well-known method to achieve this advantange is via the use of a quantum
state exhibiting multipartite entanglement of the Greenberger–Horne–Zeilinger kind, also known
as a GHZ state [19]. Here we demonstrate that, without global knowledge of the quantum network
structure, a QGCNN ansatz can learn to prepare a GHZ state. We use a QGCNN ansatz with
Ĥ1 =

∑
{j,k}∈E ẐjẐk and Ĥ2 =

∑
j∈V X̂j . The loss function is the negative expectation of the

sum of stabilizer group generators which stabilize the GHZ state [20], i.e., L(η) = −〈
⊗n

j=0 X̂ +∑n−1
j=1 ẐjẐj+1〉 for a network of n qubits. Results are presented in Fig. 1b. Note that the advantage

of using a QGNN ansatz on the network is that the number of quantum communication rounds is
simply proportional to P , and that the local dynamics of each node are independent of the global
network structure. As a further test of the validity of the GHZ state, we show the results of a quantum
phase kickback test which demonstrates the quantum sensing signal sensitivity speedup [21].

Unsupervised Learning with Quantum Anharmonic Graph Convolutional Networks As a
final set of applications, we consider applying the QSGCNN from Section 2 to the task of Spectral
Clustering. Spectral clustering involves finding low-frequency eigenvalues of the graph Laplacian
and clustering the node values in order to identify graph clusters. In Fig. 2 we present the results
for a QSGCNN for varying multi-qubit precision for the representation of the continuous values,
where the loss function that was minimized was the expected value of the anharmonic potential
L(η) = 〈ĤC + ĤA〉η. Of particular interest to near-term quantum computing [22] is the single-
qubit precision case, where we modify the QSGCNN construction as p̂j 7→ X̂j , ĤA 7→ I and
ĤC 7→ 1

2

∑
{j,k}∈E λjk(|1〉〈1|j − |1〉〈1|k)2, where |1〉〈1|k = (Î − Ẑk)/2. We see that using a

low-qubit precision yields sensible results, thus implying that spectral clustering could be a promising
new application for near-term quantum devices.
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4 Discussion & Conclusion

Results featured in this paper should be viewed as a promising set of first explorations of the potential
applications of QGNNs. Through our numerical experiments, we have shown the use of these QGNN
ansatze in the context of quantum dynamics learning, quantum sensor network optimization, and
unsupervised graph clustering. Given that there is a vast set of literature on the use of Graph Neural
Networks and their variants to quantum chemistry, future works should explore hybrid methods where
one can learn a graph-based hidden quantum representation (via a QGNN) of a quantum chemical
process. As the true underlying process is quantum in nature and has a natural molecular graph
geometry, the QGNN could serve as a more accurate model for the hidden processes which lead to
perceived emergent chemical properties. We seek to explore this in future work. Other future work
could include a benchmark of the QSGCNN for the graph isomorphism problem [23], generalizing
the QGNN to include quantum degrees of freedom on the edges, include quantum-optimization-
based training of the graph parameters via quantum phase backpropagation [16], and extending the
QSGCNN to multiple features per node.
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