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Abstract

We present a study for the generation of events from a physical process with
generative deep learning. To simulate physical processes it is not only important to
produce physical events, but also to produce these events with the right frequency of
occurrence (density). We investigate the feasibility to learn the event generation and
the frequency of occurrence with standard and modified Variational Autoencoders
(VAEs) to produce events like Monte Carlo generators with up to 20 final state
objects. We study pp→ tt̄ including the decay of the top quarks and a simulation
of the detector response. By buffering density information of Monte Carlo events
in latent space given the encoder of a VAE and by introducing a smudge factor α
we are able to construct a prior for the sampling of new events from the decoder
that yields distributions that are in very good agreement with real Monte Carlo
events and are generated 108 times faster.

1 Introduction

The simulation of physical and other statistical processes is typically done with the help of sampling
quasi-random numbers as the input of a simulation. The simulation turns random numbers into
observable physical events. This is known as the Monte Carlo (MC) method. A fundamental
problem with the numerical calculations simulating physical processes today is their immense
need for computational resources which restricts the corresponding scientific progress regarding
its velocity, budget and therefore general availability. As an example, the full pipeline of the MC
event generation in particle physics experiments including the detector response may take up to
10 minutes per event [1–8] and largely depends on MC sampling algorithms such as VEGAS [9].
Accelerating the event generation pipeline with the help of machine learning will also provide a
significant speed up for signal studies allowing e.g. broader searches for signals of new physics.
Another issue is the probabilistic nature underlying event generation: the inability to exactly specify
the event that ought to be generated. Data analysis often requires to generate events which are
kinematically similar to events seen in the data. Current event generators typically require the
generation of many events and then, after generation, to select the interesting events with a low ef-
ficiency. Furthermore, currently the simulation itself cannot be learned directly from real detector data.
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In this paper we outline an alternative approach with deep generative machine learning (ML) models
and perform a feasibility study of our method. The main problem we tackle in this paper is to create
a generator that learns to sample from distributions that are in good agreement with the distributions
found in the training data. However, most efforts of the machine learning community regarding
generative models are typically not aimed at learning the correct frequency of occurrence. So far,
applications of generative ML approaches in particle physics focused on image generation [10–13]
due to the recent successes in unsupervised machine learning with generative adversarial networks
(GANs) [14–16] to generate realistic images according to human judgement [17, 18]. Here, we
investigate deep generative models, namely Variational Autoencoders (VAEs) [19] and provide proof
for the feasibility of expanding the use of generative models in the form of VAEs beyond images for
applications in particle physics.

To test our setup, we study the tt̄ production from proton collisions, where at least one of the top
quarks is required to decay leptonically. Additionally we study tt̄ production with up to 20 final state
objects. We find that by using a density information buffer with the decoder of a VAE we are able to
produce a realistic collection of events that follows the distributions present in the MC event data.

2 Methodology

2.1 Event Generation

We have generated 0.5 million events of pp→ tt̄, where at least one of the top-quarks is required to
decay leptonically. We used MG5_aMC@NLO v6.3.2 [1] for the matrix element generation, using
the NNPDF PDF set [20]. Madgraph is interfaced to Pythia 8.2 [2], which handles the showering of
the matrix element level generated events. The matching with the parton shower was done using the
MLM merging prescription [21]. Then a quick detector simulation was done with Delphes 3 [3, 4],
using the ATLAS detector card.

For the dataset with up to twenty final state objects, we implement the leading order (LO) matrix
element (ME) generation of tt̄ events in MG5_aMC@NLO v2.6.5 [1], using the NNPDF PDF set
(NNPDF2.1 LO) [20]. We allow the tops to decay both leptonically and hadronically, yielding a
mixed sample of fully leptonic, semi-leptonic and fully hadronic final states. The ME events are
then showered using Pythia 8 [2]. An analysis is performed with the resulting hepmc files using the
following selection cuts:

• p`T > 10 GeV,

• pjT > 30 GeV,

• |y`,b,τ | < 2.5.

Here, `, j, b are the leptons (e, µ), light-jets and b−tagged jets and pT , y denote the transverse
momentum and the rapidity of an object. The τ -leptons are allowed to decay both leptonically and
hadronically. The jets are constructed using the anti-kt jet clustering algorithm [? ] within the
FastJet framework [4]. For the b-tagging, the B-mesons are identified and are matched with the
jets with which it has R < 0.2 1. These jets are further required to be within the aforementioned pT
and y ranges. Finally, we require require 70% of such jets to be b-tagged. For the τ -tagged jets, we
require that the τ -hadrons also lie within ∆R = 0.2 of some jet and require them to abide by the
pT , y requirements. The leptons are isolated by demanding that the total hadronic activity around
∆R < 0.2 of that lepton is less than 10% of its pT . Finally, we also demand a flat 70% tagging
efficiency to these τ -tagged jets. Then, the CSV file that is used for training the B-VAE contains the
following observables: Event weight, ET , φET , pobjiT , yobji, φobji, Eobji, index. Here,
ET denoted the the missing transverse energy. The energy of a visible object i is denoted by E,
where i runs from 1 to maximally 20. This means that we store a maximum of 20 objects per event,
but there also may be less objects in a single event.

1R =
√

∆y2 + ∆φ2, where φ is the azimuthal angle.
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2.2 Generative Models

We model the generation of collider events x by assuming that the events we want to sample follow
an unknown distribution p(x) and that p(x) depends on some set of hidden latent variables z.
Practically, we treat this as a two step process where we first sample from a parametrized prior
pθ(z) and then sample x from the conditional probability pθ(x|z). Variational Autoencoders [19]
are explicit probabilistic models that allow us to efficiently learn the parameters θ to sample from
an approximation of the marginalized likelihood pθ(x) =

∫
dx pθ(x|z)p(z) which is otherwise

intractable in many cases, especially when pθ(x|z) is a deep neural network. VAEs consist of two
neural networks: 1) the probabilistic encoder qφ(z|x), an approximation to the true, intractable
posterior p(z|x), that creates a distribution over latent variables for a true observation and 2) the
probabilistic decoder pθ(x|z) that creates a distribution over possible x events given some latent code
z. The two neural networks with parameters φ and θ are jointly trained by maximizing a practical
estimator of the lower bound of the marginal likelihood

L = −DKL(qφ(z|x)‖pθ(z)) + Eqφ(z|x) [log(pθ(x|z)] , (1)

where DKL is the Kullback-Leiber divergence that is a distance measure for probability distributions,
i.e. the first term of the objective incentivizes that the distribution over latent variables is trained to be
similar to some chosen prior, which in our case is pθ(z) = N (0, 1). The second term corresponds
to the negative reconstruction error of pθ(x|z) given some input z that is sampled from qφ(z|x).
Thus, the loss function of the VAE that is minimized is proportional to DKL(qφ(z|x)‖pθ(z)) and
the mean squared error between a true observation x and its reconstructed output x′. Additionally,
we introduce a factor B � 1 [22] to the DKL term to emphasize good reconstructions, such that we
can write the loss function of the VAE as

L =
1

M

M∑
i=1

(1−B) ·MSE +B ·DKL, (2)

where M is the batch-size. Training this and then constructing the prior

qφ,X(z) =
1

N

N∑
i=1

qφ(z|xi)p(xi) (3)

by aggregating the encodings of true observations x yields the B-VAE.

It turns out that the quality of reconstructions deteriorates the larger the highest multiplicity present
in the data set. This is related to the increasing sparsity of x: because all events have the same
dimensionality in our setup, independent of their actual number of final state objects, many entries
with the value 0 are implied. Assuming #fmax is the maximum number of final state objects present
in our data, then for event i, the number of 0 entries is 4 · (#fmax −#fi) - and our data contains
events with #fi = {0, . . . , 20}. In principle the B-VAE is also capable of learning the marginalized
likelihood for high-multiplicity events but it turns out that the performance can be improved by
incorporating additional terms into the loss function in eq. 2 that classify the type and number of final
state objects.

3 Results

In Fig. 1, the results for the more complicated tt̄ production with a subsequent semi-leptonic decay
are shown. We show results using the two different values for the latent space dimension (dim(z)),
as well as using different values for α and β. We train the B-VAE on events that have a maximum of
four jets and two leptons in the final state. For simplicity we do not discriminate between b-jets and
light-flavored jets, nor between different kinds of leptons. A jet is defined as a clustered object that
has a minimum transverse momentum (pT ) of 20 GeV in the Monte Carlo simulation. Regarding
dim(z) we conclude that both 16 and 32 can deliver satisfactory results, although we get slightly
better reconstructions for dim(z) = 32. The results also show that we require a low value of β to get
satisfying distributions. Fig. 1 shows a very good agreement for the invariant mass of all four jets, the
MET and METφ. Finally, generating 107 tt̄ events with the VAE has taken 177.5 seconds on an Intel
i7-4790K and is therefore 108 faster than the traditional MC methods.
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Figure 1: Events that are generated by the Monte Carlo generator for the pp→ tt̄ process (gray), by
the standard VAE (red line) and by the B-VAE (rest) for different values of α, β and dim(z). Shown
from left to right is the invariant mass distributions for the four jets, the missing transverse energy
(MET) and the azimuthal angle φ of the MET vector. All energies are given in GeV.

Figure 2: Histograms of events that are generated by the Monte Carlo generator with ≈ 475000
events and the B-VAE for α = 1, α = 5 and α = 10 with ≈ 15 million events each for the full range
[−π, π]× [−π, π]. We show the histograms for the full ranges of φ. The full range is subdivided into
1000× 1000 bins.
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Figure 3: The ditop mass, MET, as well as y and φ for the leading jet, b-jet and electron for the
dataset with up to 20 final state objects.
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Fig. 2 shows four histograms for the training data (≈ 475000 events) and ≈ 15 million generated
events from the B-VAE with three different α = {1, 5, 10} for φ of the leading jet vs. φ of the next to
leading jet (φ1 vs φ2). We observe that for α = 1, most of the blank space in (φ1 vs. φ2) is already
filled with frequencies that globally follow the density pattern of the Monte Carlo data. However, we
note that this pattern is not learned smoothly but in a way that resembles egg cartons with local peaks
that seem to come from random seeds in the training data whose latent space representations have
a small width and still contains some holes. Increasing α alleviates this issue: for α = 5 almost
all holes disappear but the landscape in (φ1, φ2) is still mountaineous which is smoothened out for
α = 10.

Fig. 3 shows preliminary results for the B-VAE that is extended with classification loss terms and
trained on data containing up to 20 final state objects. We see that y and φ are learned perfectly,
while there is some deviation for the MET and the ditop mass system. The results prove that it is also
possible to learn the generation of events that can have low and very high multiplicities at the same
time.

4 Conclusion

We have provided more evidence for the capability of deep generative models to learn the laws of
physics with VAEs and in particular with our modification of it, the B-VAE. By creating a density
information buffer of real MC events in the latent space of a VAE and by introducing a smudge factor
α, i.e. with the B-VAE, we presented a way to generate events whose probabilistic characteristics are
in very good agreement with those found in data simulated with Monte Carlo event generators for
pp→ tt̄ events. Adding a classification term to the B-VAE loss allows to reliably model the event
generation for low and high multiplicities with up to 20 final state objects. These results indicate
not only usefulness for particle physics but beyond that for all branches of science that involve
computationally expensive Monte Carlo simulations, the interest to create a generative model from
experimental data or the need to sample from high-dimensional and complex probability distributions.
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