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Abstract

We summarize and discuss new inference techniques for systems that are described
by a simulator with an intractable likelihood function. The key idea is that addi-
tional information that characterizes the latent process can often be extracted from
the simulator. It can then be used to augment the training data for neural surrog-
ates of the likelihood function. These methods have been applied to problems in
particle physics and astrophysics, and the initial results demonstrate their potential
to improve sample efficiency and quality of inference.

1 Simulation-based inference

Phenomena across many domains of science are most accurately described by complicated computer
simulations. These simulators typically implement a forward mode: given some model parameters θ
as input, they generate potential outcomes or observations x, sampled from a probability density or
likelihood function x ∼ p(x|θ). Often the true values of these model parameters θ are not known,
and the inverse problem of inferring the likely values of θ from measured values of the observables x
is an important goal. Both in a frequentist and a Bayesian setup, the central object for this inference
task is the likelihood function, which can be schematically written as

p(x|θ) =
∫

dz p(x, z|θ) . (1)

Here we are integrating over all possible values of the latent variables z that describe the generative
process, and p(x, z|θ) is the joint probability density or joint likelihood function of observables and
latent variables.

Realistic scientific simulators often involve a large number of latent variables, and the integral over
such a high-dimensional space cannot be calculated explicitly (nor can it be sampled efficiently for
a fixed x). The likelihood function is therefore intractable. This is a major challenge for scientific
inference in fields ranging from particle physics to cosmology, epidemiology, genetics, and climate
science.

Inference in this case requires simulation-based (or likelihood-free) inference techniques. Some
approaches, including the well-known Approximate Bayesian Computation (ABC) technique [1, 2] as
well as methods based on density estimation [3], rely on reducing the observations to low-dimensional
summary statistics. Standard choices of these summary statistics discard information and reduce
the power of a measurement. In another approach, neural networks are trained as surrogates for the
likelihood, the likelihood ratio, or the posterior [4–30]. Usually these methods are agnostic about the
latent process in the simulator and only use its output x during training.
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Here we review a recently proposed family of techniques that extracts more information from the
simulator and uses this augmented data to train neural networks to either learn the likelihood or
likelihood ratio function efficiently or to define powerful summary statistics that are statistically
optimal in a well-defined approximation [31–34]. In Sec. 3 we point to software tools that automate
this process. We then discuss the application of these ideas to various problems in Sec. 4. We
conclude with a brief discussion of this approach in Sec. 5.

This submission reviews the ideas originally presented in Refs. [31–34] and presents an overview of
the application of these ideas to the physical sciences [35–37]. It is intentionally kept brief, aiming
for an “extended abstract” style. For a camera-ready version, we would expand it into a more typical
paper form and add new, so far unpublished results demonstrating the power of these methods.

2 Algorithms

Extracting additional information from simulations. When running a simulator for model para-
meters θ, it is often possible to extract and save two additional quantities, the joint likelihood ratio
r(x, z|θ) and the joint score t(x, z|θ) defined as [31–33]

r(x, z|θ) = p(x, z|θ)
pref(x, z)

and t(x, z|θ) = ∇θ log p(x, z|θ) . (2)

Both quantities depend on the latent variables that characterize a particular run of the simulator. The
joint likelihood ratio quantifies how likely a particular simulation run (including all latent variables)
is compared to a reference distribution pref(x, z), while the joint score quantifies how much more or
less likely it becomes under infinitesimal changes of the model parameters.

Efficiently learning the likelihood (ratio). The joint likelihood ratio and the joint score can then
be used to construct certain loss functionals L[g(x, θ)], where the test function g(x, θ) is only a
function of the observables x and parameters θ (not of the latent variables z). It can be shown that
these loss functionals are minimized by the likelihood function argming L[g(x, θ)] = p(x|θ) or
the likelihood ratio function argming L[g(x, θ)] = r(x|θ) ≡ p(x|θ)/pref(x), depending on the loss
function [31–34]. This minimization is implemented through machine learning: a neural network
implements the variational family g(x, θ), and the loss functional is numerically minimized through
stochastic gradient descent. In this way the neural network learns an approximate version of the
likelihood or likelihood ratio function, which are otherwise intractable! We demonstrate this trick in
the top left panel of Fig. 1. After an upfront training phase it can be evaluated efficiently and provides
the central ingredient to both frequentist [31–33] and Bayesian [30, 37] inference.

Learning locally optimal summary statistics. Alternatively, we can use the joint score to con-
struct a loss functional L[g(x)] that is minimized by the score [31–33], argming L[g(x)] =
t(x|θref) ≡ ∇θ log p(x|θ)|θref . In a parameter region close to the reference parameter point θref,
the components of this vector are the sufficient statistics: reducing a high-dimensional measurement
to this low-dimensional vector does not lose any information on the parameters of interest. A neural
network trained by minimizing this loss therefore defines an optimal set of summary statistics for
frequentist inference based on histograms or ABC [38].

The authors of Ref. [31] have used the metaphor of “mining gold” to describe the extraction of the
joint likelihood ratio and joint score from the simulator: while it may require some effort to calculate,
it can be very valuable for inference.

3 Automation and tools

General strategies. These inference techniques rely on the ability to calculate the joint likelihood
ratio and joint score. This can generally be done in one of three ways [31]:

1. In some simulators, domain knowledge allows us to calculate these quantities manually,
either by modifying the simulator code or by extracting the required information from
existing simulator output. Often only some steps of the latent process depend on the
parameters of interest, which can simplify this calculation substantially.
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2. The calculation can be added to an existing simulator via a protocol such as PPX [39].

3. New simulators can be written within a probabilistic programming frameworks. In this case
the joint likelihood ratio and joint score can be calculated automatically.

MADMINER. The MADMINER library [35] automates all steps of the discussed inference tech-
nique for particle physics processes that occur in the ATLAS and CMS experiments in the Large
Hadron Collider. The calculation of the joint likelihood ratio and joint score is based on the spe-
cific structure of these processes. The library wraps around the particle physics simulators MAD-
GRAPH5_AMC [40] and PYTHIA 8 [41], supporting almost any relevant high-energy physics scatter-
ing process and theories of new physics. It also supports the phenomenological detector simulation
DELPHES 3 [42], though it is extendable to a full GEANT4-based detector simulation [43] as used
by the ATLAS and CMS collaboration. MADMINER is under continuous development and has a
growing user base.

Automation for PYRO simulators. As a proof of principle for the automatic computation of
the joint likelihood ratio and joint score for general simulators, Ref. [44] provides a framework
that calculates these quantities automatically for any simulator in which all stochastic steps are
implemented with the PYRO library [45].

4 Application to the physical sciences

Toy problems. Reference [31] demonstrated these techniques in two toy problems, including the
generalized Galton board and the Lotka-Volterra system of predator-prey dynamics [31]. It was found
that using the joint likelihood ratio and joint score during training improves the sample efficiency.

Particle physics. The new techniques have been applied to a number of measurement problems
in proton-proton collisions at the Large Hadron Collider, focusing on one of the most interesting
problems in particle physics in the coming years: the precision measurement of Higgs boson prop-
erties and the search for subtle, “indirect” effects of new physics. The analyzed processes include
Higgs production in the “weak boson fusion” mode with a decay into four leptons [32–34], the
production of Higgs bosons together with W bosons [36], and Higgs production together with top
quarks [35]. In all cases, the new methods were found to substantially improve the sensitivity to
the parameters of interest compared to industry standard methods based on summary statistics, as
we show top right and bottom left panels of Fig. 1. Ongoing projects use these methods to analyze
CP violation in ttH production [46] as well as look for suppressed interference effects in Wγ
production. After these phenomenological studies, members of the ATLAS collaboration are now in
the process of implementing these techniques into an actual measurement based on real data. On the
conceptual side, Ref. [47] compares the new inference techniques to the Matrix Element Method and
the Optimal Observable technique, two domain-specific inference methods that also use information
that characterizes the latent process.

Cosmology and astrophysics. The nature of dark matter is one of the most intriguing open ques-
tions of high-energy physics. Strong gravitational lensing — light patterns emitted from a background
galaxy and bent by the gravitational field of another galaxy — will soon offer us a rare chance to
search for the effects of the dark matter substructure, i. e. its distribution on small length scales, but
teasing out this subtle effect is difficult. In Ref. [37] it was shown how the inference techniques
discussed above make such an analysis possible. With this approach, the expected observations from
upcoming surveys can be efficiently analyzed, promising the extraction of a maximal amount of
information on population parameters describing dark matter substructure, as we demonstrate in the
bottom right panel of Fig. 1.

Other fields. We are currently investigating problems from other fields for which these methods
may be useful. One particularly interesting system is the simulation of epidemiological systems.
Systems biology and climate science might also offer interesting applications.
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Figure 1: Top left: Illustration of the new inference techniques in a particle physics problem, the
measurement of new physics effects in the production of a Higgs boson with two top quarks. The
likelihood ratio as the function of a one-dimensional observable (on the x axis) is estimated. The dots
show the joint likelihood ratio extracted from different runs of the simulator (the training data). The
solid line shows the likelihood ratio estimated from the neural network. Figures taken from Ref. [35].
Top right: Performance in a particle physics problem, the measurement of new physics effects in
the production of a Higgs boson in the “weak boson fusion” mode with a decay into four leptons.
We consider a simplified scenario in which the true likelihood function is tractable. For different
methods of likelihood ratio estimation, we show the error of the resulting estimate as a function
of training sample size. The new algorithms (red, blue, green) substantially improve the sample
efficiency compared to two baselines (grey and black dotted). Based on results in Refs. [32–34].
Bottom left: Performance in a particle physics problem, the measurement of new physics effects in
the production of a Higgs boson with two top quarks. We show expected confidence limits in terms
of two model parameters (x and y axis) based on a traditional histogram-based method (green), the
optimal summary statistic defined through the new techniques presented here (blue), and likelihood
ratio estimation with the new techniques (red). The new machine learning–based techniques lead
to tighter exclusion limits, demonstrating an improvement in inference quality. Figures taken from
Ref. [35]. Bottom right: Bayesian inference in an astrophysical problem, the measurement of dark
matter substructure parameters based on observations of strong gravitational lensing. We show the
expected posterior on the dark matter subhalo mass function (solid black) together with 68% and
95% credible intervals. The method faithfully recovers the true function used to generate the data
(dotted black). Figure taken from Ref. [37].
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5 Discussion

“Mining gold” — extracting additional quantities from a simulator that characterize the latent process,
and using this information to train neural networks to learn the likelihood function — has the potential
to improve scientific inference for many problems. Unlike traditional likelihood-free inference
techniques, in particular ABC, it does not require to compress the data to ad-hoc summary statistics,
avoiding the corresponding loss of information. After an upfront training phase, the evaluation of
new observations is very efficient, amortizing the cost of inference. Compared to other techniques
in which neural networks are trained to learn the likelihood or posterior, the extra information can
improve the sample efficiency and thus improve the fidelity of the inference and / or reduce the
computational cost. Since this approach focuses on the loss functionals and is agnostic about the
model architecture, it is orthogonal to recent improvements in neural density estimators such as
normalizing flows, and can easily be applied to these models.

Acknowledgements

We want to thank our co-authors Sally Dawson, Irina Espejo, Joeri Hermans, Samuel Homiller,
Juan Pavez, Tilman Plehn, and Markus Stoye. Our work benefitted from many great discussions;
while we lack the space to list everyone, we are particularly grateful to Lukas Heinrich, Jan-Matthis
Lückmann, and George Papamakarios. We are supported by the National Science Foundation under
the awards ACI-1450310, OAC-1836650, and OAC-1841471; through the NYU IT High Performance
Computing resources, services, and staff expertise; by the Moore-Sloan data science environment at
NYU. KC is also supported through the NSF grant PHY-1505463, FK by NSF grant PHY-1620638.

References
[1] D. B. Rubin: ‘Bayesianly Justifiable and Relevant Frequency Calculations for the Applied

Statistician’. The Annals of Statistics 12 (4), p. 1151, 1984. URL https://doi.org/10.
1214/aos/1176346785.

[2] M. A. Beaumont, W. Zhang, and D. J. Balding: ‘Approximate Bayesian computation in popula-
tion genetics’. Genetics 162 (4), p. 2025, 2002.

[3] P. J. Diggle and R. J. Gratton: ‘Monte Carlo Methods of Inference for Implicit Statistical
Models’, 1984.

[4] Y. Fan, D. J. Nott, and S. A. Sisson: ‘Approximate Bayesian computation via regression density
estimation’. Stat 2 (1), p. 34, 2013. arXiv:1212.1479.

[5] L. Dinh, D. Krueger, and Y. Bengio: ‘NICE: Non-linear Independent Components Estimation’ ,
2014. arXiv:1410.8516.

[6] M. Germain, K. Gregor, I. Murray, and H. Larochelle: ‘MADE: Masked autoencoder for
distribution estimation’. 32nd International Conference on Machine Learning, ICML 2015 2, p.
881, 2015. arXiv:1502.03509.

[7] D. J. Rezende and S. Mohamed: ‘Variational inference with normalizing flows’. 32nd Interna-
tional Conference on Machine Learning, ICML 2015 2, p. 1530, 2015. arXiv:1505.05770.

[8] K. Cranmer, J. Pavez, and G. Louppe: ‘Approximating Likelihood Ratios with Calibrated
Discriminative Classifiers’ , 2015. arXiv:1506.02169.

[9] L. Dinh, J. Sohl-Dickstein, and S. Bengio: ‘Density estimation using Real NVP’ , 2016.
arXiv:1605.08803.

[10] B. Paige and F. Wood: ‘Inference networks for sequential monte carlo in graphical mod-
els’. 33rd International Conference on Machine Learning, ICML 2016 6, p. 4434, 2016.
arXiv:1602.06701.

[11] G. Papamakarios and I. Murray: ‘Fast e-free inference of simulation models with Bayesian
conditional density estimation’. In ‘Advances in Neural Information Processing Systems’, p.
1036–1044, 2016.

5

https://doi.org/10.1214/aos/1176346785
https://doi.org/10.1214/aos/1176346785
http://arxiv.org/abs/1212.1479
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1502.03509
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1506.02169
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1602.06701


[12] O. Thomas, R. Dutta, J. Corander, S. Kaski, and M. U. Gutmann: ‘Likelihood-free inference by
ratio estimation’ , 2016. arXiv:1611.10242.

[13] B. Uria, M.-A. Côté, K. Gregor, I. Murray, and H. Larochelle: ‘Neural Autoregressive Distribu-
tion Estimation’ , 2016. arXiv:1605.02226.

[14] A. Van Den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu:
‘Conditional image generation with PixelCNN decoders’. Advances in Neural Information
Processing Systems p. 4797–4805, 2016. arXiv:1606.05328.

[15] A. van den Oord, S. Dieleman, H. Zen, et al.: ‘WaveNet: A Generative Model for Raw Audio’ ,
2016. arXiv:1609.03499.

[16] A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu: ‘Pixel recurrent neural net-
works’. 33rd International Conference on Machine Learning, ICML 2016 4, p. 2611, 2016.
arXiv:1601.06759.

[17] D. Tran, R. Ranganath, and D. M. Blei: ‘Hierarchical implicit models and likelihood-free
variational inference’. In I. Guyon, U. V. Luxburg, S. Bengio, et al. (eds.), ‘Advances in Neural
Information Processing Systems’, volume 2017-December, p. 5524–5534, 2017.

[18] G. Papamakarios, T. Pavlakou, and I. Murray: ‘Masked autoregressive flow for density estim-
ation’. Advances in Neural Information Processing Systems 2017-December, p. 2339, 2017.
arXiv:1705.07057.

[19] G. Louppe, J. Hermans, and K. Cranmer: ‘Adversarial Variational Optimization of Non-
Differentiable Simulators’ , 2017. arXiv:1707.07113.

[20] J. M. Lueckmann, P. J. Gonçalves, G. Bassetto, K. Öcal, M. Nonnenmacher, and J. H. Mackey:
‘Flexible statistical inference for mechanistic models of neural dynamics’. Advances in Neural
Information Processing Systems 2017-December, p. 1290, 2017. arXiv:1711.01861.

[21] M. U. Gutmann, R. Dutta, S. Kaski, and J. Corander: ‘Likelihood-free inference via classifica-
tion’. Statistics and Computing 28 (2), p. 411, 2018.

[22] M. A. Hjortsø and P. Wolenski: ‘Some Ordinary Differential Equations’. Linear Mathematical
Models in Chemical Engineering abs/1806.0, p. 123, 2018. arXiv:1806.07366.

[23] T. Dinev and M. U. Gutmann: ‘Dynamic Likelihood-free Inference via Ratio Estimation (DIRE)’
, 2018. arXiv:1810.09899.

[24] W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud: ‘FF-
JORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models’ , 2018.
arXiv:1810.01367.

[25] C. W. Huang, D. Krueger, A. Lacoste, and A. Courville: ‘Neural autoregressive flows’. 35th In-
ternational Conference on Machine Learning, ICML 2018 5, p. 3309, 2018. arXiv:1804.00779.

[26] D. P. Kingma and P. Dhariwal: ‘Glow: Generative flow with invertible 1×1 convolu-
tions’. Advances in Neural Information Processing Systems 2018-December, p. 10215, 2018.
arXiv:1807.03039.

[27] J.-M. Lueckmann, G. Bassetto, T. Karaletsos, and J. H. Macke: ‘Likelihood-free inference with
emulator networks’ , 2018. arXiv:1805.09294.

[28] G. Papamakarios, D. C. Sterratt, and I. Murray: ‘Sequential Neural Likelihood: Fast Likelihood-
free Inference with Autoregressive Flows’ , 2018. arXiv:1805.07226.

[29] J. Alsing, T. Charnock, S. Feeney, and B. Wandelt: ‘Fast likelihood-free cosmology with neural
density estimators and active learning’. Monthly Notices of the Royal Astronomical Society
488 (3), p. 4440, 2019. arXiv:1903.00007.

[30] J. Hermans, V. Begy, and G. Louppe: ‘Likelihood-free MCMC with Approximate Likelihood
Ratios’ , 2019. arXiv:1903.04057.

6

http://arxiv.org/abs/1611.10242
http://arxiv.org/abs/1605.02226
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1705.07057
http://arxiv.org/abs/1707.07113
http://arxiv.org/abs/1711.01861
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1810.09899
http://arxiv.org/abs/1810.01367
http://arxiv.org/abs/1804.00779
http://arxiv.org/abs/1807.03039
http://arxiv.org/abs/1805.09294
http://arxiv.org/abs/1805.07226
http://arxiv.org/abs/1903.00007
http://arxiv.org/abs/1903.04057


[31] J. Brehmer, G. Louppe, J. Pavez, and K. Cranmer: ‘Mining gold from implicit models to
improve likelihood-free inference’ , 2018. arXiv:1805.12244.

[32] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez: ‘Constraining Effective Field Theories with
Machine Learning’. Physical Review Letters 121 (11), p. 111801, 2018. arXiv:1805.00013.

[33] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez: ‘A Guide to Constraining Effective Field
Theories with Machine Learning’. Phys. Rev. D98 (5), p. 052004, 2018. arXiv:1805.00020.

[34] M. Stoye, J. Brehmer, G. Louppe, J. Pavez, and K. Cranmer: ‘Likelihood-free inference with
an improved cross-entropy estimator’ , 2018. arXiv:1808.00973.

[35] J. Brehmer, F. Kling, I. Espejo, and K. Cranmer: ‘MadMiner: Machine learning-based inference
for particle physics’ , 2019. arXiv:1907.10621.

[36] J. Brehmer, S. Dawson, S. Homiller, F. Kling, and T. Plehn: ‘Benchmarking simplified template
cross sections in $WH$ production’ , 2019. arXiv:1908.06980.

[37] J. Brehmer, S. Mishra-Sharma, J. Hermans, G. Louppe, and K. Cranmer: ‘Mining for Dark
Matter Substructure: Inferring subhalo population properties from strong lenses with machine
learning’ , 2019. arXiv:1909.02005.

[38] J. Alsing and B. Wandelt: ‘Generalized massive optimal data compression’. Monthly Notices
of the Royal Astronomical Society: Letters 476 (1), p. L60, 2018. arXiv:1712.00012.

[39] P. developers: ‘Probabilistic Programming eXecution protocol (PPX)’, 2019. URL http://
github.com/probprog/ppx.

[40] J. Alwall, R. Frederix, S. Frixione, et al.: ‘The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to parton shower simulations’.
Journal of High Energy Physics 2014 (7), p. 79, 2014. arXiv:1405.0301.

[41] T. Sjöstrand, S. Mrenna, and P. Skands: ‘A brief introduction to PYTHIA 8.1’. Computer
Physics Communications 178 (11), p. 852, 2008. arXiv:0710.3820.

[42] P. Demin and M. Selvaggi: ‘a modular framework for fast simulation of a generic collider
experiment What is Fast Simulation ?’ JHEP 02, p. 57, 2014. arXiv:1307.6346.

[43] S. Agostinelli, J. Allison, K. Amako, et al.: ‘Geant4 – a simulation toolkit’. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506 (3), p. 250, 2003.

[44] Participants of the Likelihood-Free Inference Meeting at the Flatiron Institute 2019: ‘Code
repository for the automatic calculation of joint score and joint likelihood ratio with Pyro.’,
2019. URL https://github.com/LFITaskForce/benchmark.

[45] E. Bingham, J. P. Chen, M. Jankowiak, et al.: ‘Pyro: Deep Universal Probabilistic Program-
ming’. Journal of Machine Learning Research , 2018. arXiv:1810.09538.

[46] D. Goncalves and F. Kling: ‘Higgs-top cp measurement with machine learning’. in progress .

[47] J. Brehmer, K. Cranmer, I. Espejo, F. Kling, G. Louppe, and J. Pavez: ‘Effective LHC meas-
urements with matrix elements and machine learning’. In ‘19th International Workshop on
Advanced Computing and Analysis Techniques in Physics Research: Empowering the revolu-
tion: Bringing Machine Learning to High Performance Computing (ACAT 2019) Saas-Fee,
Switzerland, March 11-15, 2019’, , 2019. arXiv:1906.01578.

7

http://arxiv.org/abs/1805.12244
http://arxiv.org/abs/1805.00013
http://arxiv.org/abs/1805.00020
http://arxiv.org/abs/1808.00973
http://arxiv.org/abs/1907.10621
http://arxiv.org/abs/1908.06980
http://arxiv.org/abs/1909.02005
http://arxiv.org/abs/1712.00012
http://github.com/probprog/ppx
http://github.com/probprog/ppx
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/0710.3820
http://arxiv.org/abs/1307.6346
https://github.com/LFITaskForce/benchmark
http://arxiv.org/abs/1810.09538
http://arxiv.org/abs/1906.01578

	Simulation-based inference
	Algorithms
	Automation and tools
	Application to the physical sciences
	Discussion

