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Abstract

Learning to generate very sparse images with deep generative models has been
a challenging problem due to issues such as mode collapse and sparse gradient
signals. In this work, we propose a novel model combining a neural network
generator with an explicit mixture model, which induces sparsity with a learnable
Dirac delta mass at zero instead of using rectified linear units at the output. Our
model decouples the sparsity level and the non-zero distribution of each pixel in the
data while fitting both of them simultaneously by minimizing the model’s entropy.
We demonstrate both theoretically and empirically that the model is able to learn a
rich distribution of a sparse muon image dataset while maintaining desired physical
properties such as isolation.

1 Introduction

Detailed simulations are increasingly being used in science and engineering to study complex
processes. These simulations can be very slow and computationally expensive, so it is common
to use approximations to make them faster. As an alternative many generative models based on
Variational Auto-encoder (VAE) and Generative Adversarial Network (GAN) have been proposed
for generating data with a similar distribution as the one obtained from experiments or created by
simulations[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Some of these events can be represented as images, and
in the case of particle physics they are usually very sparse images.

In particular, GAN based generative models for very sparse images synthesis in particle physics
have been studied in detail by Oliveira et al. with their proposed LAGAN [12] and CALOGAN
[13] models. Both of these models rely on the ReLU activation function in the final layer to induce
sparsity in the output image. However, the gradient with respect to the input for the ReLU activation
is zero when the input is negative, which potentially leads to a sparse gradient signal issue noted by
[12]. In addition, GANs have been known to suffer from unstable training and mode collapse [14].

Our model addresses these issues by decoupling the sparsity level estimation and the non-zero pixel
value distribution estimation using an explicit probabilistic model. Further, we use a neural network
generator to allow for greater flexibility in the generated distribution. In a concurrent work [15], it
has been shown that the neural network generator helps to enrich the output distribution. We derived
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the sparse cross entropy loss based on our model and show that our objective function corresponds to
a lower bound of the cross entropy between the data distribution and the generated image distribution.
With the decoupling approach, we are able to model the non-zero distribution separately from the
sparsity level. We empirically demonstrate its benefit in learning the correct sparsity level and it can
potentially lead to faster training convergence for the model.

2 Dataset

Isolated muons were generated via the process pp → Z ′ → µ+µ− with a Z ′ mass of 20 GeV;
muons generated from this boson decay should be representative of muons from any boson decay.
Non-isolated muons were generated via the process pp→ bb̄. Both samples are generated at a center
of mass energy

√
s = 13 TeV. Collisions and immediate decays are simulated with MADGRAPH5 [16],

showered and hadronized with PYTHIA [17], and the detector response simulated with delphes [18].
The classification of these objects is senstitive to the presence of additional proton interactions,
referred to as pile-up events. We overlay such interactions within the simulation with an average
number of interactions per event of µ = 50, as a future estimate of LHC experimental data. 100,000
signal and background events are generated.

Muons in the range pT ∈ [10, 15] GeV are considered, and the signal samples are weighted such that
the transverse muon momentum distributions match that of the background. Only events where a
muon is identified as a track in the muon spectrometer are used.

Muon images are built from the calorimeter deposits. We preprocess the calorimeter deposit images
by centering the image on the coordinates of the identified muon and only include calorimeter deposits
within a η − φ radius of R < 0.4 in order to only analyze the activity near the muon and reduce
topological sensitivity. We choose a 32x32 grid, which roughly corresponds with the calorimeter
granularity of ATLAS and CMS.

Heat maps of the calorimeter energy deposits in η − φ space for both signal isolated muons and
background non-isolated muons are shown in Fig. 3. The signal calorimeter deposits are uniform and
can be attributed to pileup whereas the background deposits are largely radially symmetric with a
dense core from the jet. The dataset is very sparse, 98.83% of the pixels in the data are zero.

3 Decoupled Generative Models

The model has two components as shown in Figure 1. The first component is a neural network which
transforms the distribution of an input noise vector into distribution parameters η and π in order
to enrich the mixture distribution in the second component, and account for dependency among all
pixels of the explicit model. The second component is a mixture distribution of dirac delta mass πi at
zero, and a non-zero tractable probability density pηi(xi). π then corresponds to the mean parameter
of the Bernoulli vector which controls the sparsity level of the images while η captures the non-zero
pixel intensity for the ith pixel. After sampling a Bernoulli variable from z ∼ Bern(π), together
with a random variable β ∼ pη(β). we use the element-wise product of those two as the output
x = z � β. The complete generating process is shown in Figure 1.

The distribution of the output generated by the model can be seen as a compound distribution of
an explicit mixture model with its distribution parameters induced by a neural network generator.
Below, we demonstrate how to optimize the distribution pφ1(β) and pφ2(π), where φ1 and φ2 are
the generator parameters for β and π respectively.

Sparse Cross Entropy Loss A natural choice of the training objective is to maximize the cross
entropyH(pD(x),x) and the generated distribution pθ(x), where θ = {π,η}. However, since we
want to decouple the sparsity level and the non-zero distribution estimation by fitting p(xi|zi = 0)
and p(xi|zi = 1), we show it is more straightforward to consider the joint distribution pη,π(x, z).
Suppose the output x ∈ RM , and we assume conditional independence of p(xi|πi, ηi) among the
pixels. We parameterize the conditional density of p(xi|zi = 1) = pηi(xi), where it can be any
explicit density function with parameter ηi, and p(xi|zi = 0) = δ0(xi), a dirac delta mass at zero. In
the following proposition, we derive the analytical form of the sparse cross entropy.

Proposition 1 Consider an augmentation of x ∼ pD(x) from the observed data space: X =
{(x, z) : x ∈ RM and z ∈ {0, 1}M}, where zi = 1 if xi 6= 0, and zi = 0 if xi = 0. The
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Figure 1: Architecture of the proposed sparse image generator. The noise vector is fed into a neural
network generator, where the model learns the dependency of each pixel value of the image. The
network then outputs two vectors: π and η, which are used to sample z, β.

cross-entropy between data distribution pD(x, z) and the generated distribution pη,π(x, z) is

−H(pD(x, z), pη,π(x, z)) = Ex,z∼pD(x,z) log pη,π(x, z)

= Ex,z∼pD(x,z)

M∑
i=1

[logπzi + log(1− π)(1−zi) + log pηi(xi)]
(1)

Since the conditional independence is assumed, we have pη,π(x, z) =
∑M
i=1 pηi,πi(xi, zi). The

above proposition can be proven by expressing the joint distribution as p(xi, zi) = p(xi|zi)p(zi).
Since zi is discrete, the marginal p(xi, zi) can be decomposed into p(xi, zi) = p(xi|zi = 1)p(zi =
1) + p(xi|zi = 0)p(zi = 0).

The above cross entropy objective turns out to have nice interpretation as well. When the true pixel
value of the i-th pixel is zero, it will only penalize the probability of πi = p(zi = 1) to be large, while
having no penalty on βi. And when xi > 0, it will penalize πi to be small as well as βi different from
xi. In comparison, if a simple mean squared error (MSE) loss is used, which is typically the case in
plain variational autoencoders [19], it is not clear how the model is able learn the mixture distribution
of output xi. While the sparse cross entropy loss (1) allows us to model the distribution when xi 6= 0
separately from the point mass placed at xi = 0 for every i. It is worth noting that the sparse cross
entropy loss can easily be applied to the likelihood model of VAE, which itself is of independent
interest.

The expectation in (1) is approximated using Monte Carlo integration by taking samples of x, z and
computing the average. Combining the distribution of η,π which is induced by the neural network
generator, the complete training objective is:

Minimize − EpD(x,z)Epφ1,φ2 (π,η) log p(x, z|π,η) w.r.t φ1, φ2 (2)

Again, Monte Carlo integration is used to approximate Epφ1,φ2 (π,η) log p(x, z|π,η).

Proposition 2 Minimizing the objective (2) is equivalent to minimizing a lower bound of the cross
entropy −Ex,z∼pD(x,z) log pφ1,φ2(x, z)

Noting that Epφ1,φ2 (π,β) log p(x, z|π,β) ≤ log pφ1,φ2
(x, z), proposition 2 is an application of

Jensen’s inequality.

4 Experiments

We conducted our experiment on the proposed muon dataset. The likelihood model pη(x) used is an
isotropic Gaussian with mean parameter η and standard deviation is set to the empirical standard
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Figure 2: Isolation value distribution for signal images and background images

(a) Average of signal images (b) Average of background images

Figure 3: Average of images across the dataset. Real images are on the left of each subfigure and the
images generated by our model on the right

deviation of the image. We tried a 4-layer deconvolutional generator as well as a 4-layer fully
connected generator and both of them yield similar results. And we trained two models, one on for
the signal image and one for the background image. Both of the models converge quickly within 30
epochs. We validate the quality of the images in our model by qualitative and quantitative methods.
Qualitatively we consider the average of all the images in the real and generated dataset across pixels.
The results can be seen in figure 3. Here we can see the real and generated images are very similar.
In the case of signal images the uniform distribution is reproduced while in the background we see a
concentration in the center for both the real and generated image.
We consider physically motivated functions to quantitatively evaluate the performance of our model
similarly to Oliveira et al. [12]. In this case we consider isolation with a radius of 0.2 at the center of
the image. We calculate the isolation for an image I with muon PTµ at a radius 0.2 as:

Iso(I, PTµ) =

∑∆R<0.2
cells I(φ, η)

PTµ
where ∆R =

√
∆φ2 + ∆η2 (3)

Since all the images have a PTµ value in the range PTµ ∈ [10, 15] GeV, to calculate the isolation
we use the known value of PTµ for the real images and we approximate the value for the generated
images as the mean for the real images PTµ = 11.85. We can see in figure 2 that the distributions for
real and generated images are very similar but generated images have a slightly higher mean isolation
value in both cases and fewer generated images have isolation values close to zero. This could be an
effect of using the approximation of using the mean PTµ and could be improved by including PTµ as
an input parameter for the model.

We also compare the Earth Moving Distance of the isolation value distribution between the real
images and the generated images, which can be seen as the minimum amount of “work” required to
transform one distribution into another. The distance for the signal and background images are 0.06
and 0.17 respectively. As a baseline, we calculated the isolation value of the images generated by a
model which independently samples from the empirical distribution of each pixel, the distance is 0.35
and 0.89 for signal and background, which indicates that our model is able to capture the dependence
structure among the pixels.
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5 Conclusion

We propose a decoupled hierarchical generative model by compounding an explicit mixture model
with an implicit distribution produced by a neural network generator. We demonstrate that both
sparsity level and the non-zero pixel distribution can be effectively learned by minimizing a lower
bound of the cross-entropy between the data distribution and the generated distribution. We believe
our method opens up an interesting way of principled probabilistic modeling of the sparse distribution
and it is easier to interpret the sparsity level comparing to GAN approaches.

As for future work, we are looking forward to comparing our model with LAGAN in the jet dataset
used in their paper as well as testing the performance of LAGAN in our muon dataset for further com-
parison. In addition, more flexible distributions other than an isotropic Gaussian can be incorporated
to model the non-zero distribution as long as it has tractable likelihood function.
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[6] K. Deja, T. Trzciński, and Ł. Graczykowski. Generative models for fast cluster simulations in the
tpc for the alice experiment. In Information Technology, Systems Research, and Computational
Physics, pages 267–280, Cham, 2020. Springer International Publishing.

[7] Maurizio Pierini Amir Farbin Benjamin Hooberman Wei Wei Matt Zhang Vitória Barin Pacela
Sofia Vallecorsafac Maria Spiropulu Federico Carminati, Gulrukh Khattak and Jean-Roch Vli-
mant. Calorimetry with deep learning: Particle classification, energy regression, and simulation
for high-energy physics. Deep Learning for Physical Sciences, Workshop at the 31st Conference
on Neural Information Processing Systems (NeurIPS), 2017.

[8] Sambuddha Ghosal Balaji Pokuri Soumik Sarkar Baskar Ganapathysubramanian Chin-
may Hegde Viraj Shah, Ameya Joshi. Encoding invariances in deep generative models. 2019.

[9] Aishik Ghosh Tobias Golling Gilles Louppe David Rousseau Dalila Salamani Kyle Cranmer,
Stefan Gadatsch and Graeme Stewart on behalf of the ATLAS Collaboration. Deep generative
models for fast shower simulation in atlas. Bayesian Deep Learning, Workshop at the 32nd
Conference on Neural Information Processing Systems (NeurIPS), 2018.

[10] Kaustuv Datta Dominick Olivito Bobak Hashemi, Nick Amin and Maurizio Pierini. Lhc
analysis-specific datasets with generative adversarial networks. ArXiv, abs/1901.05282, 2019.

[11] Wieske de Swart Melissa van Beekveld Luc Hendriks Caspar van Leeuwen Damian Podareanu
Roberto Ruiz de Austri Sydney Otten, Sascha Caron and Rob Verheyen. Event generation and
statistical sampling for physics with deep generative models and a density information buffer.
ArXiv, https://arxiv.org/abs/1901.00875, 2019.

5



[12] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. Calogan: Simulating 3d high
energy particle showers in multi-layer electromagnetic calorimeters with generative adversarial
networks. Phys. Rev. D, 97, 2018.

[13] Luke de Oliveira, Michela Paganini, and Benjamin Nachman. Learning particle physics by
example: Location-aware generative adversarial networks for physics synthesis. Comput Softw
Big Sci, 2017.

[14] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.

[15] Mingyuan Zhou Mingzhang Yin. Semi-implicit generative model. May, 2019.

[16] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer,
P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations. JHEP, 07:079,
2014.

[17] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual.
JHEP, 0605:026, 2006.

[18] J. de Favereau et al. DELPHES 3, A modular framework for fast simulation of a generic collider
experiment. JHEP, 1402:057, 2014.

[19] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

6


	Introduction
	Dataset
	Decoupled Generative Models
	Experiments
	Conclusion

