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Abstract

This paper introduces equivariant hamiltonian flows, a method for learning
expressive densities that are invariant with respect to a known Lie-algebra of local
symmetry transformations while providing an equivariant representation of the
data. We provide proof of principle demonstrations of how such flows can be learnt,
as well as how the addition of symmetry invariance constraints can improve data
efficiency and generalisation. Finally, we make connections to disentangled repre-
sentation learning and show how this work relates to a recently proposed definition.

1 Introduction

Learning generative models with structured latent representations is important for interpretability,
data efficiency, and generalisation [2, 7]. One kind of structural bias that has been shown to work
well in the past is that of invariance or equivariance with respect to a group of transformations. For
example, convolutional neural networks [21] are invariant to the group of translations by construction,
while disentangled representations learn equivariance to more general transformations [10]. In order
to learn such structured latent representations, however, often a trade-off has to be made in terms of
latent expressivity. For example, most of the disentangling models to date use a unit Gaussian prior
[9, 14, 3]. Normalizing flows [27, 11, 5, 18, 4, 25, 16] provide a simple mechanism to build expressive
density estimators in problems without much domain knowledge. But it remains a challenge to embed
flow-based models with domain knowledge such as data on specific manifolds [6] and known symme-
tries or factorisation of the target density. In this paper we focus on problems where there is domain
knowledge in the form of known invariances of a target density which we wish to learn. This is the typ-
ical case in many modelling problems, such as density over molecular structures, lattice-QCD [1] with
internal gauge symmetries (e.g. U(n) and SU(n)), multi-particle systems [20], etc. The challenge we
address is the following: suppose that we start from a base distribution π(z) that is invariant with
respect to a group of transformations. If we transform this density via a generic flow f(z), there will
be no guarantees that the transformed density p(z)=π(f−1(z))/det|Jac|will be invariant as well.

Our main contributions are: (i) Introduce equivariant Hamiltonian flows; (ii) Propose a general
algorithm for enforcing equivariance in learned Hamiltonian flows with respect to any connected
Lie-Group; and (iii) Prove a simple lemma that allow us to construct invariant densities from
equivariant flows. The result of this are flows that transform a simple density that is invariant with
respect to the actions of a known symmetry group, into another invariant density that is arbitrarily
complex. We demonstrate that learning latent representations with the known equivariance structure
helps with data efficiency and generalisation. Finally, we connect this work to the recent definition of
disentangled representations [10].

2 Methods
We first revise the notion of Hamiltonian dynamics from physics [8]. In physics the Hamiltonian for-
malism is used to model energy conserving continuous dynamics in an abstract state space s=(q,p)
of generalised position q and momentum p. Formal connections can be made between Hamiltonian
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Figure 1: Model diagrams. From left to right: (i) Equivalence between flows with swappedT dtH andT εg , as a result
of the equivariance of Hamiltonian flows with respect to generators of symmetries of the Hamiltonian function;
(ii) Generative model diagram. The last momentum variable pn (shaded node) is dropped during sampling; (iii)
Inference mode diagram for computing the ELBO, where h(pn|qn) is an encoder model. The last momentum
variable pn is inferred during training.

dynamics and the actions of continuous symmetry generators – those transformations that leave the dy-
namics of the system modelled by the Hamiltonian unchanged throughout the path traversed. Indeed,
the roles of the Hamiltonian and its symmetry generators can be interchangeable, whereby a symmetry
generator of one system can be a Hamiltonian for a different system, and both Hamiltonian and sym-
metry transformations commute with each other. The commutativity of transformations is measured
by an operator known as the Poisson bracket. Hence, we use the Poisson bracket between the Hamilto-
nian and the known symmetry generators as a regularizer to restrict the form of the learnt Hamiltonian
flow, whereby it models the final data density well, while also being invariant to the known symmetries.

Hamiltonian Flow Generative Model A Hamiltonian flow is a continuous-time normalizing
flow induced by the Hamiltonian dynamics in the state-space s = (q, p) ∈ R2d via the ODE
(q̇,ṗ) = {(q,p), H(q,p)}= (∂H∂p ,−

∂H
∂q ), where {,} is a skew-symmetric differential operator known

as the Poisson bracket or commutator and H : R2d→ R is a scalar function known as Hamiltonian.
For two scalar functions f , g we set {f(q,p), g(q,p)}=

∑
i
∂f(q,p)
∂qi

∂g(q,p)
∂pi

− ∂f(q,p)
∂pi

∂g(q,p)
∂qi

. If f or g
is a vector valued function, we extend the previous definition component wise so that {f, g} is also a
vector value function.

In what follows, we introduce the notation T εf (x) = x + ε{x, f(x)} to indicate an infinitesimal
transformation induced by the Poisson bracket with a function f . With this notation, the Euler
discretization of the Hamiltonian ODE is written as st+dt = T dtH (st) = st+dt{st,H(st)}. We can
construct a more complex flow by chaining several transformations s′ = T dtHn ◦ ... ◦ T

dt
H1

(s). The
inverse of this flow is obtained by replacing dt by−dt and reversing the order of the transformations,
s=T−dtH1

◦...◦T−dtHn
(s′)+O(dt2).

We can create an expressive probability density pθ(sn) on sn=(qn,pn) by starting from an initial dis-
tribution π(s0), and transforming this density via the flow sn=T

dt
Hn
◦...◦T dtH1

(s0), where the Hamil-
tonians Hi are scalar functions parametrized by neural networks with parameters θ. This constitutes
a more structured form of Neural ODE flow, [4]. There are a few notable differences between Hamil-
tonian flows and general ODE flows: (i) The Hamiltonian ODE is volume-preserving 1, which makes
the computation of log-likelihood cheaper than for a general ODE flow. We show in Figure 2 that this
does not necessarily reduce the expressivity of p(qn) even if p(sn)may be restricted; (ii) General ODE
flows are only invertible in the limit dt→ 0, whereas for some Hamiltonians, we can use simplectic
integrators (such as Leap-Frog, [23]) that are both invertible and volume-preserving for any dt > 0.
The resulting density pθ(sn) is given by lnp(sn)=lnπ(s0)=lnπ(T−dtH1

◦...◦T−dtHn
(sn))+O(dt2).

The structure s=(q,p) on the state-space imposed by the Hamiltonian dynamics can be constraining
from the point of view of density estimation, since this would require an artificial split of the data
vectors in two disjoint sets. We could consider different mechanisms to address this: (i) Exploit
the splits and use alternating masks similar to [5]; (ii) Treat the momentum variables p as latent
variables. The latter is the same interpretation as in HMC [23, 26, 22]. It is also more elegant
as it does not require an artificial split of the data. This results in a density p(qn) of the form
p(qn)=

∫
dpnp(qn,pn)=

∫
dpnπ(T

−dt
H1
◦...◦T−dtHn

(qn,pn)). This integral is intractable, but the model
can still be trained via variational methods where we introduce a variational density hφ(pn|qn) with
parameters φ and optimise the ELBO,

ELBO(qn)=Ehφ(pn|qn)[lnπ(T
−dt
H1
◦...◦T−dtHn

(qn,pn))−lnhφ(pn|qn)]≤ lnp(qn), (1)

1 This can be seen by computing the determinant of the Jacobian of the infinitesimal transformation T dtH ,

det(Jac)=det

[
I+dt

(
∂2H
∂qi∂pj

− ∂2H
∂qi∂qj

∂2H
∂pi∂pj

− ∂2H
∂pi∂qj

)]
=1+dt Tr

(
∂2H
∂qi∂pj

− ∂2H
∂qi∂qj

∂2H
∂pi∂pj

− ∂2H
∂pi∂qj

)
+O(dt2)=1+O(dt2).
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instead. Note that, in contrast to VAEs ([17, 13]), the ELBO (1) is not explicitly in the form of a
reconstruction error term plus a KL term.

Equivariant Hamiltonian Flows and Symmetries Let’s say we want to learn a density pθ(x) and
we also want it to be invariant with respect to a set of transformations x′ = Tω(x) induced by the
elements ω of a symmetry group G. That is, p(x′) = p(Tω(x)) = p(x),∀ω ∈ G. In the following
we will assume that G is a connected Lie group2. This will allow us to introduce infinitesimal
transformations, and being invariant with respect to transformations in G will be equivalent to being
invariant with respect to those infinitesimal transformations.

The Hamiltonian formalism provides a natural language to manipulate symmetries and, in particular,
it provides a connection between invariance of the Hamiltonian function to the equivariance of the
Hamiltonian flow. We can parametrize the action of an infinitesimal symmetry transformation on
the state-space s= (q,p) by a scalar function g(s) via the Poisson bracket as s′ = s+ε{s,g}, where
ε > 0, ε << 1. This can also be represented as s′ = T εg (s). In this context, a transformation T εg is
defined to be an infinitesimal symmetry if T εg ◦ T dtH = T dtH ◦ T εg +O(εdt2 + ε2dt). That is, we can
interchange the composition order of the Hamiltonian flow by the symmetry transformation. This is
illustrated in Figure 1(left). This means that all intermediate states s1,...,n of the Hamiltonian flow
will also transform in the same manner as the starting state, that is, they will form an equivariant
or covariant representation of the starting state. When T εg is a symmetry, the function g is called
a symmetry generator. By Noether’s first Theorem [24], if T εg is a symmetry then the generator g
commutes with the Hamiltonian function, that is {H, g}=0 3. This implies that the numerical value
of the function g will remain constant throughout the Hamiltonian flow, for this reason the symmetry
generators g are also referred to as conserved charges in physics. Based on this reasoning, we say
that a Hamiltonian flow is equivariant if {H, g} = 0. The set of all symmetry generators is closed
under the Poisson bracket. That is, if two functions f and g are symmetry generators then {f,g} is a
symmetry generator. This means that the set of all generators forms a Lie algebra.

If we can express our domain knowledge about the target density as: (i) a set of symmetry generators
gk, k = 1,...,Ng and (ii) an initial simple invariant density π, we can construct a new density p via
Hamiltonian flow that is also invariant by learning a Hamiltonian such that {gk,H} = 0. This is
formalised in Lemma 1.

Lemma 1. Given a Hamiltonian function H :R2d→R, a set of symmetry generators gk :R2d→R
and a base density π :R2d→R+, the density p :R2d→R+ induced by the Hamiltonian flow T dtH will
be invariant with respect to the generators gk if {gk, H}={gk, π}=0, ∀k.

Proof. From Noether’s theorem, {gk, H} = 0 implies the equivariance of the flow
T εg ◦T dtH =T dtH ◦T εg+O(εdt2+ε2dt). It remains to prove that π(T εg (s))=π(s)+O(ε2). Expanding to
first order in ε, we have π(T εg (s))=π(s)+ε∇πT {s,gk(s)}+O(ε2)=π(s)+ε{π,gk(s)}+O(ε2)=

π(s)+O(ε2).

We can enforce {gk, H}=0 via constrained optimisation, where we perform a min-max optimisation
of the LagrangianL(θ,φ,λ) instead,

(θ?,φ?,λ?)=min
θ,φ

max
λ≥0

L(θ,φ,λ); L(θ,φ,λ) =−
∑
x∈Data

ELBO(x)+
∑
k

λkEπ[{gk(s),H(s)}2−κ],

where λk is a Lagrange multiplier for the kth generator and κ controls the precision of the constraint.

In lemma 1, we found how to get the density over the full state s to be invariant under the symmetries.
What we want though, is to have the marginal distribution over q to be invariant. This will happen
when the Hamiltonian H(q,p) is factored as a "kinetic" K(p), and "potential" U(q) energy terms,
H(q,p)=K(p)+U(q).4

2See [19] for an introduction to Lie groups and their infinitesimal counterparts, the Lie algebras. Readers
unfamiliar with these concepts should think of Lie groups as abstract equivalent of groups of matrices. For
example, the group of orientation preserving rotations SO(n) is a Lie group, and its infinitesimal counterpart (its
Lie algebra) is the space of anti-symmetric matrices.

3This can be easily proven by observing that T εg ◦T dtH −T dtH ◦T εg =εdt{g,H}+O(εdt2+ε2dt).
4This condition puts a constraint on the Hamiltonian to ensure that any learnt generator will induce an action on

q such that the marginal distribution is invariant under that action. Alternatively, we could have put a constraint on
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Figure 2: Learning with Hamiltonians H(q, p) = K(p) + U(q). A: Learning a density with known SO(2)
symmetry. First two columns: training and test log-likelihoods of models with different constraint precision κ in
the regime of infinite and finite data. Adding the symmetry constraint increases both train and test data efficiency.
In the finite data regime it prevents over-fitting. Second two columns: KDE estimators of the target and learnt
densities; learned kinetic energy K(p) and potential energy U(q). B: Multimodal density learning. First two
columns: KDE estimators of the target and learnt densities; learned kinetic energy K(p) and potential energy
U(q). Last column: single Leap-Frog step and integrated flow. The potential energy learned multiple attractors,
also clearly visible in the integrated flow plot. The basins of attraction are centred at the modes of the data.

Connections to disentangling: Given a decomposition of a continuous group into a direct product of
subgroups, the actions of the generators of these subgroups can be modelled by independent generators
T εw and T εg such that {T εw,T εg}=0. By definition in [10], these will act on independent subspaces of
a disentangled q. Since equivariant flows preserve the action of the generators, they will preserve the
disentanglement of the representation.

3 Experiments
For all experiments the Hamitonian was of the formH(q,p)=K(p)+U(q). The kinetic energy term
K and the potential energy term U are soft-plus MLPs5 with layer-sizes [d,128,128,1] where d is the
dimension of the data. The encoder network was parametrized as h(p|q) =N(p;µ(q),σ(q)), where
µ and σ are relu MLPs with size [d,128,128,d]. The Hamiltonian flow T dtH , was approximated using
a Leap-Frog integrator [23] since it preserves volume and is invertible for any dt. We found that only
two Leap-Frog steps where sufficient for all our examples. Parameters were optimised using Adam
[15] (learning rate 3e-4) and Lagrange multipliers were optimised using the same method as [12].
The initial density π was chosen separately for each dataset.

Domain knowledge via generators: In this experiment, we test the main idea of this paper where
we want to learn a target density which is symmetric with respect to the SO(2) group of 2D rotations.
In Figure 2A we show the target density. The Lie-algebra of the SO(2) group has a single generator
which we express as g(q,p)=q1p2−q2p1. For this experiment, the base density is a spherical normal
π(s) = N(s; 0, I) since it has SO(2) symmetry. Our results demonstrate that the inclusion of the
symmetry constraint increases the data-efficiency of the model in the infinite data regime and, most
importantly, substantially reduces overfitting in the finite data-regime.

Multimodal density Learning: In this experiment we to assess the expressivity of Hamiltonian
flows. We demonstrate in Figure 2B that it can transform a soft-uniform6 π(s;σ,β) into a new density
with arbitrary number of modes. Furthermore, the resulting model is nicely interpretable: The learned
potential energy U(q) learned to have several local minima, one for each mode of the data. As a
consequence, the trajectory of the initial samples through the flow has attractors at the modes of the
data.

4 Conclusions
We have demonstrated an effective method for learning invariant probability densities using Hamil-
tonian flows. The proposed method opens the doors to many potential applications of ML in physics,
which we plan to explore in future work.

the type of generators (namely only consider those g such that ∂2g
∂pi∂pj

=0, ∀i,j) such that any learnt Hamiltonian
will do. This condition is also satisfied in our experiments.

5Due to the Poisson bracket, optimisation of Hamiltonian flows involves second-order derivatives of the MLPs
used for Hamiltonians and generators, so relu non-linearities are not suitable.

6The soft-uniform density π(s;σ,β)∝ f(β(s+σ 1
2
))f(−β(s−σ 1

2
)), where f is the sigmoid function was

chosen to make it easier to visualise the learned attractors. The experiment also work if we start from other
densities such as a Normal.
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