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Abstract

Deep learning has achieved remarkable success in diverse applications; however,
its use in solving partial differential equations (PDEs) has emerged only recently.
Here, we present an overview of physics-informed neural networks (PINNs), which
embed a PDE into the loss of the neural network using automatic differentiation.
The PINN algorithm is simple, and it can be applied to different types of PDEs,
including integro-differential equations, fractional PDEs, and stochastic PDEs.
Moreover, PINNs solve inverse problems as easily as forward problems. We also
present a Python library for PINNs: DeepXDE, which supports complex-geometry
domains based on the technique of constructive solid geometry, and enables the
user code to be compact, resembling closely the mathematical formulation. We
introduce the usage of DeepXDE and its customizability, and we also demonstrate
the capability of PINNs and the user-friendliness of DeepXDE for two examples.

1 Introduction

Despite the remarkable success of deep learning in diverse applications, deep learning has not yet been
widely used in the field of scientific computing. However, more recently, solving partial differential
equations (PDEs) via deep learning has emerged as a potentially new sub-field under the name of
Scientific Machine Learning [1]. To solve a PDE via deep learning, a key step is to constrain the neural
network to minimize the PDE residual, and several approaches have been proposed to accomplish
this. Compared to the traditional mesh-based methods, such as the finite difference method and
the finite element method, deep learning could be a mesh-free approach by taking advantage of
the automatic differentiation [17], and could break the curse of dimensionality [16, 6]. Among
these approaches, some can only be applied to particular types of problems, such as image-like
input domain [9, 12, 24] or parabolic PDEs [2, 7]. Some researchers adopt the variational form
of PDEs and minimize the corresponding energy functional [5, 8]. However, not all PDEs can be
derived from a known functional, and thus Galerkin type projections have also been considered [13].
Alternatively, one could use the PDE in strong form directly [4, 20, 10, 11, 3, 19, 17]; in this
form, automatic differentiation could be used directly to avoid truncation errors and the numerical
quadrature errors of variational forms. This strong form approach was introduced in [17] coining
the term physics-informed neural networks (PINNs). An attractive feature of PINNs is that it can be
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used to solve inverse problems with minimum change of the code for forward problems [17, 18]. In
addition, PINNs have been further extended to solve integro-differential equations (IDEs), fractional
differential equations (FDEs) [15], and stochastic differential equations (SDEs) [23, 21, 14, 22].

In this paper, we present the PINN algorithm and a Python library DeepXDE (https://github.
com/lululxvi/deepxde), which can be used to solve multi-physics problems and supports complex-
geometry domains based on the technique of constructive solid geometry, hence avoiding tedious
and time-consuming computational geometry tasks. By using DeepXDE, time-dependent PDEs can
be solved as easily as steady states by only defining the initial conditions. DeepXDE is designed to
make user codes stay compact and manageable, resembling closely the mathematical formulation.

The paper is organized as follows. In Section 2, we present the algorithm of PINNs. In Section 3, we
introduce the usage of our library, DeepXDE, and its customizability. In Section 4, we demonstrate
the capability of PINNs and DeepXDE. Finally, we conclude the paper in Section 5.

2 Physics-informed neural networks

In this section, we first provide a overview of PINNs for solving forward and inverse PDEs.

PINNs for solving PDEs We consider the following PDE parameterized by λ for the solution u(x)
with x = (x1, . . . , xd) defined on a domain Ω ⊂ Rd:
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with suitable boundary conditions (BCs) B(u,x) = 0 on ∂Ω. For time-dependent problems, we
consider time t as a special component of x, and Ω contains the temporal domain.
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Figure 1: Schematic of a PINN for solving the diffusion equation ∂u
∂t = λ∂2u

∂x2 with mixed BCs
u(x, t) = gD(x, t) on ΓD ⊂ ∂Ω and ∂u

∂n (x, t) = gR(u, x, t) on ΓR ⊂ ∂Ω. The initial condition (IC)
is treated as a special type of Dirichlet BC on the spatio-temporal domain. Tf and Tb denote the two
sets of residual points for the equation and BC/IC.

Procedure 1 The PINN algorithm for solving differential equations.

Step 1 Construct a neural network û(x;θ) with parameters θ.
Step 2 Specify the two training sets Tf and Tb for the equation and boundary/initial conditions.

Step 3 Specify a loss by summing the weighted L2 norm of both the PDE and BC residuals.
Step 4 Train the neural network to find the best parameters θ∗ by minimizing the loss L(θ; T ).

The algorithm of PINN [11, 17] is shown in Procedure 1, and visually in the schematic of Fig. 1
solving a diffusion equation. We explain each step as follows. In a PINN, we first construct a neural
network û(x;θ) as a surrogate of the solution u(x), which takes the input x and outputs a vector
with the same dimension as u. Here, θ = {W `, b`}1≤`≤L is the set of all weight matrices and bias
vectors in the network û. One advantage of choosing neural networks as the surrogate of u is that we
can take the derivatives of û with respect to x by the automatic differentiation.

In the next step, we need to restrict û to satisfy the PDE and BCs. We only restrict û on some scattered
points, i.e., the training data T = {x1,x2, . . . ,x|T |} of size |T |. T is comprised of two sets Tf ⊂ Ω
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and Tb ⊂ ∂Ω, which are the points in the domain and on the boundary, respectively. We refer Tf and
Tb as the sets of “residual points”. To measure the discrepancy between û and the constraints, we
consider the loss defined as the weighted summation of the residuals for the equation and BCs:

L(θ; T ) = wfLf (θ; Tf ) + wbLb(θ; Tb), (2)

where Lf (θ; Tf ) = 1
|Tf |

∑
x∈Tf
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, Lb(θ; Tb) =

1
|Tb|
∑

x∈Tb ‖B(û,x)‖22, and wf and wb are the weights. In the last step, the procedure of searching
for a good θ by minimizing the loss L(θ; T ) using gradient-based optimizers is called “training”.

PINNs for solving inverse problems In inverse problems, there are some unknown parameters λ
in Eq. (1), but we have extra information on points Ti ⊂ Ω: I(u,x) = 0, for x ∈ Ti. PINNs solve
inverse problems as easily as forward problems, and we only add an extra term to Eq. (2):

L(θ,λ; T ) = wfLf (θ,λ; Tf ) + wbLb(θ,λ; Tb) + wiLi(θ,λ; Ti), (3)

where Li(θ,λ; Ti) = 1
|Ti|
∑

x∈Ti ‖I(û,x)‖22. We then optimize θ and λ together: θ∗,λ∗ =

arg minθ,λ L(θ,λ; T ).

3 DeepXDE usage and customization

In this section, we introduce the usage of DeepXDE and how to customize DeepXDE.

Usage DeepXDE makes the code stay compact and nice, resembling closely the mathematical
formulation. Solving differential equations in DeepXDE is no more than specifying the problem using
the build-in modules, including computational domain (geometry and time), differential equations,
ICs, BCs, constraints, training data, network architecture, and training hyperparameters. The workflow
is shown in Procedure 2 and Fig. 2(left).

Procedure 2 Usage of DeepXDE for solving differential equations.

Step 1 Specify the computational domain using the geometry module.
Step 2 Specify the differential equations using the grammar of TensorFlow.
Step 3 Specify the boundary and initial conditions.
Step 4 Combine the geometry, PDE, and IC/BCs together into data.PDE or data.TimePDE for

time-independent or time-dependent problems, respectively. To specify training data, we can
either set the specific point locations, or only set the number of points and then DeepXDE
will sample the required number of points on a grid or randomly.

Step 5 Construct a neural network using the maps module.
Step 6 Define a Model by combining the PDE problem in Step 4 and the neural net in Step 5.
Step 7 Call Model.compile to set the optimization hyperparameters, such as optimizer and learn-

ing rate. The weights in Eq. (2) can be set here by loss_weights.
Step 8 Call Model.train to train the network from random initialization or a pre-trained model

using the argument model_restore_path. It is extremely flexible to monitor and modify
the training behavior using callbacks.

Step 9 Call Model.predict to predict the PDE solution at different locations.

In DeepXDE, The built-in primitive geometries include interval, triangle, rectangle,
polygon, disk, cuboid and sphere. Other geometries can be constructed from these primi-
tive geometries using three boolean operations: union (|), difference (-) and intersection
(&). This technique is called constructive solid geometry (CSG), see Fig. 2 for examples.

DeepXDE supports four standard BCs, including Dirichlet, Neumann, Robin, and Periodic, and
a more general BC can be defined using OperatorBC. The initial condition can be defined using IC.
There are two networks available in DeepXDE: feed-forward neural network (maps.FNN) and residual
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Figure 2: Usage of DeepXDE. (left) Flowchart of DeepXDE corresponding to Procedure 2. The
white boxes define the PDE problem and the training hyperparameters, which are combined into the
blue boxes. The orange boxes are the three steps to solve the PDE. (middle) CSG examples. A and
B represent the rectangle and circle, respectively. A|B, A− B, and A&B are constructed from A
and B. (right) A complex geometry (top) is constructed from a polygon, a rectangle and two circles
(bottom). This capability is included in the module geometry of DeepXDE.

neural network (maps.ResNet). It is also convenient to choose different training hyperparameters,
such as loss types, metrics, optimizers, learning rate schedules, initializations and regularizations.

It is usually a good strategy to monitor the training process of the neural network, and then make
modifications in real time. In DeepXDE, this can be implemented by using a callback function, e.g.,
ModelCheckpoint, which saves the model after certain epochs or when a better model is found.

Customizability All the components of DeepXDE are loosely coupled, and thus DeepXDE is
well-structured and highly configurable. Please refer to the documentation (https://deepxde.
readthedocs.io) for the customization of new geometry, neural network and callback.

4 Demonstration examples

We use PINNs and DeepXDE to solve two inverse problems. We use the tanh as the activation
function, Adam optimizer, and learning rate 0.001. For the Lorenz system we use a network of depth
3 and width 40, and for the diffusion-reaction system we use a network of depth 3 and width 20. The
weights wf , wb and wi in Eq. (3) are set as 1. The codes are published in GitHub.

Inverse problem for the Lorenz system Consider the Lorenz system dx
dt = ρ(y − x), dydt =

x(σ − z)− y, dzdt = xy − βz, with the IC (x(0), y(0), z(0)) = (−8, 7, 27), where ρ, σ and β are the
parameters to be identified from the observations. The observations are produced by solving the above
system to t = 3 with the true parameters (ρ, σ, β) = (10, 15, 8/3). We choose 400 random points
and 25 equispaced points as the residual points Tf and Ti, respectively. The evolution trajectories are
presented in Fig. 3A, with the final identified values of (ρ, σ, β) = (10.002, 14.999, 2.668).

Inverse problem for the diffusion-reaction system A diffusion-reaction system in porous media
for the solute concentrations CA, CB and CC (A + 2B → C) is described by ∂CA

∂t = D ∂2CA

∂x2 −
kfCAC

2
B , ∂CB

∂t = D ∂2CB

∂x2 − 2kfCAC
2
B for x ∈ [0, 1], t ∈ [0, 10] with IC CA(x, 0) = CB(x, 0) =

e−20x and BCs CA(0, t) = CB(0, t) = 1, CA(1, t) = CB(1, t) = 0. We estimate the diffusion
coefficient D = 2 × 10−3 and the reaction rate kf = 0.1 based on 40000 observations of the
concentrations CA and CB in the spatio-temporal domain. The identified D (1.98× 10−3) and kf
(0.0971) are displayed in Fig. 3B, which agree well with their true values.

5 Concluding Remarks

In this paper, we present the physics-informed neural networks (PINNs) for solving forward and
inverse partial differential equations (PDEs). We developed the Python library DeepXDE, an im-
plementation of PINNs. By introducing the usage of DeepXDE, we show that DeepXDE enables
user codes to be compact and follow closely the mathematical formulation. Our numerical examples
verify the effectiveness of PINNs and the capability of DeepXDE.
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Figure 3: The identified values of (A) the Lorenz system and (B) diffusion-reaction system converge
to the true values during the training process. The parameter values are scaled for plotting.
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