
Learning to Control PDEs with Differentiable Physics

Philipp Holl
Technical University of Munich

philipp.holl@tum.de

Nils Thuerey
Technical University of Munich

nils.thuerey@tum.de

Vladlen Koltun
Intel Labs

vladlen.koltun@intel.com

1 Introduction

Understanding physical environments is a key requirement for machine learning applications such as
autonomous agents and robots [9, 2]. It is typically of vital importance to not only understand the
unperturbed physical behavior but also anticipate how the environment reacts to an agent interacting
with it [15, 7]. We consider partial differential equations (PDEs) as the most fundamental description
of physical systems. The language of PDEs is general enough to describe every physical theory, from
quantum mechanics and general relativity to turbulent flows [14]. Existing machine learning methods
that deal with agents learning to interact with their environments have often focused on reinforcement
learning [11, 6], but for high-dimensional environments, the computational cost of exploring the state
space puts severe limits on the number of interaction parameters with which the agent can influence
the physical system [10].

Meanwhile, progress has been made in utilizing differentiable solvers to find solutions to high-
dimensional optimization problems [15, 5, 13]. Yet existing methods are still computationally
expensive and thus limited to short time frames. We combine differentiable physics with deep
learning to represent solution manifolds rather than computing single solutions via optimization. In
this way, trained models can interact with a physical environment using a large number of interaction
parameters, and inference times are orders of magnitude faster than with classic optimization algo-
rithms. Here the use of differentiable physics is key for a robust learning of the complex spaces of
behavior encoded by the model PDEs.

We employ a fully differentiable Eulerian PDE solver that can solve a large class of PDEs with
analytic gradients. By fully integrating the numerical solver into the training process, neural networks
can learn how to optimally control a physical system given an initial state and a target state. We
further demonstrate that long time frames can be handled via a specialized architecture and evaluation
scheme that separates the learning of physical behavior for different time scales. The resulting
technique uses multiple neural networks, sharing the same architecture, and enables the inference of
solutions to an optimal control problem for a sequence of length n in time O(n). Full details of our
approach and the source code of our differentiable solver can be found online in Holl et al. [8] and at
https://ge.in.tum.de/research/phiflow/.

2 Differentiable PDE solvers

Let u(x, t) be described by a PDE that can be explicitly solved forward in time, i.e. time and space
derivatives do not mix. The PDE can then be written as

∂u

∂t
= P

(
u,
∂u

∂x
,
∂2u

∂x2
, ...,y(t)

)
(1)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://ge.in.tum.de/research/phiflow/

where P models the physical behavior of the system and y(t) denotes any external factors that can
influence the system. A classic solver can move the system forward in time via Euler steps:

u(ti+1) = Solver[u(ti),y(ti)] = u(ti) + ∆t · P (u(ti), ...,y(ti)) (2)

The square brackets indicate that Solver is a functional rather than a function, i.e. it takes full fields
as input. Each step moves the system forward by a time increment ∆t. Repeated execution produces
a trajectory u(t) that is a solution to the PDE.

This functionality for time advancement by itself is not well-suited to solve optimization problems,
since gradients can only be approximated by finite differencing in these solvers. For high-dimensional
or continuous systems, this method becomes computationally expensive because a full trajectory
needs to be computed for each optimizable parameter. Differentiable solvers resolve this issue by
solving the adjoint problem [12] via analytic derivatives. The adjoint problem computes the same
mathematical expressions while working with lower-dimensional vectors. A differentiable solver
can efficiently compute the derivatives with respect to any of its inputs, i.e. ∂u(ti+1)/∂u(ti) and
∂u(ti+1)/∂y(ti). This allows for gradient-based optimization of inputs or control parameters of the
simulation over an arbitrary number of time steps. The adjoint method is also used by most machine
learning frameworks, where it is more commonly known as reverse mode differentiation [16, 4].

We make use of this analogy to implement a differentiable PDE solver as a set of mathematical opera-
tions within a deep learning framework [1]. We focus on Eulerian rather than Lagrangian methods
since they are widely used for a large class of PDEs [14]. All solver operations are implemented
in a differentiable manner, i.e. the automatic differentiation tools can chain the derivatives of these
operations with built-in machine learning operations to build analytic derivatives for any combination
of operations, thus enabling end-to-end training. This toolkit of operations enables the solver to
handle a large class of PDEs, including the incompressible Navier-Stokes equations.

3 Learning force-based interactions

Assuming the physical behavior P is described by a PDE as in Eq. (1), we add a control force F (t)
which allows the model to interact with the system:

∂u

∂t
= P

(
u,
∂u

∂x
,
∂2u

∂x2
, ...

)
+ F (t) (3)

While the evolution of the complete state u is determined by the above equation, we allow some parts
of u to be hidden for the control task. This restriction reflects the fact that it is often not possible to
observe the full state of a physical system. When considering a cloud of smoke, for example, the
smoke density might be observable while the velocity field cannot be seen directly. Mathematically,
we model this restriction by decomposing u into an observable part o and a hidden part h with
u = o(u) ⊗ h(u). Here, ⊗ denotes the tensor product, adding all components of the states. The
hidden part can include spatial regions of some fields as well as entire fields.

Using the above notation, we define the control task as follows. An initial observable state o0 of
the PDE as well as a target state o∗ are given. We are interested in a reconstructed trajectory ur(t)
that matches these states at t0 and t∗, i.e. o0 = o(ur(t0)),o∗ = o(ur(t∗)), and requires the least
amount of effort over the whole time span. I.e., we aim for minimizing the forces to be applied in
terms of their magnitude with:

LF [u(t)] =

∫ t∗

t0

|Fu(t)|2 dt (4)

O
b

se
rv

at
io

n

𝑡∗

𝑡0

(a) Task (b) Trajectories

O
b

se
rv

at
io

n

Hidden state 𝒉

𝒐0

𝒐∗

𝒐0

𝒐∗

𝒖𝑟
𝒖∗
𝑟

Figure 1: Possible trajectories.

Taking discrete time steps ∆t, the reconstructed trajectory
ur is a sequence of n = (t∗−t0)/∆t states. This problem
definition is portrayed in Fig. 1. An initial observation o0

and target observation o∗ are given (a). The goal is to
reconstruct a trajectory ur that moves from o0 to o∗ in
the state space and requires as little force as possible, as
shown in (b). The grey lines represent the unperturbed
evolution of the physical system. The amount of applied
force corresponds to how far the trajectory deviates from
the natural evolution in this picture.

2

When an observable dimension cannot be controlled directly, there may not exist any trajectory u(t)
that matches both o0 and o∗. This can stem from either physical constraints or numerical limitations.
In these cases, we settle for an approximation of o∗. To measure the quality of the approximation of
the target, we define an observation loss L∗

o. The form of this loss can be chosen to fit the problem.
For our experiments we use the filtered L2 distance between target and reconstruction:

L∗
o(u(t∗)) = |Br(o∗)−Br (o(u(t∗))) |2 (5)

where Br denotes a spatial blur function with a fixed, problem-dependent radius r ≥ 0. We combine
Eqs. 4 and 5 into the objective loss function

L[u(t)] = α · LF [u(t)] + β · L∗
o(u(t∗)), (6)

with α, β > 0. Since our solver is differentiable, L can be used directly to optimize a machine
learning model such as a neural network that models ur(t),o∗, t→ F (t) with weights w. We call
this network the control force estimator (CFE).

For a sequence of n frames, L[u(t)] depends on all n states of the trajectory u(t). Thus, for recurrent
end-to-end training, n linked copies of the network need to be chained together. When inferring
the force, this results in a CFE chain, shown in Fig. 2, that alternates between network and solver
execution. When using a CFE chain, the complete sequence needs to be run forward and backward
for each optimization step of the model. This is not only slow, it also means that gradients are passed
through a potentially long chain of highly non-linear simulation steps. When the reconstruction ur
is close to an optimal trajectory, this is not a problem since the gradients ∆ur are small and the
operations executed by the solver are differentiable by construction. The solver can therefore be
locally approximated by a first-order polynomial and the gradients can be safely backpropagated.
For large ∆ur, such as at the beginning of training, this approximation breaks down, causing the
gradients to become highly unstable while passing through the chain.

This workshop paper can only provide a summary of our approach – in the full version [8], we give
details on how a divide-and-conquer scheme can be used to resolve this problem so that the feedback
from a differentiable solver leads to stable convergence in training. In this version we employ a
second model, which predicts the observable state op ((ti + tj)/2) given two observations. We refer
to this model as the observation predictor (OP).

4 Results

We apply our algorithm to two-dimensional fluid dynamic problems, which are highly challenging
due to the complexities on the governing Navier-Stokes equations [3] for the velocity field v,

P(v,∇v) = −v · ∇v + ν∇2v +∇p, (7)

subject to the hard constraints∇·v = 0 and∇×p = 0, where p denotes pressure and ν the viscosity.
In addition, we consider a passive density ρ which moves with the fluid via ∂ρ/∂t = −v · ∇ρ. We
set v to be hidden and ρ to be observable and allow forces to be applied to all of v.

We run our tests on a 128 × 128 grid, resulting in more than 16,000 effective continuous control
parameters. We train the OP and CFE networks for two different tasks: reconstruction of natural fluid

Solver𝐶𝐹𝐸Solver𝐶𝐹𝐸 Solver𝐶𝐹𝐸 𝒐(𝒖𝑟)…

𝑡0 𝑡𝑛−1 𝑡𝑛𝑡1

Δ𝒖r

𝐿 𝒐∗

Adjoint

Δ𝒘

𝐶𝐹𝐸∗…Adjoint𝐶𝐹𝐸∗Adjoint𝐶𝐹𝐸∗

Δ𝒘Δ𝒘 + + … +

(a) Forward pass

(b) Backward pass

(c) Weight update

Figure 2: Optimization scheme of a chained force prediction network. (a) The forward pass recon-
structs a trajectory by alternating between force estimation and solver execution. (b) For backpropa-
gation, the adjoint problem of the sequence is computed. (c) The weight updates from each time step
are accumulated and applied to the model.

3

Figure 3: Example reconstructed trajectory from (a) the natural flow test set and (b) the shape test set.
The target state o∗ is shown on the right.

Table 1: A comparison of methods in terms of final cost for the (a) natural flow setup and (b) the
shape transitions. The initial distribution is sampled randomly and evolved to the target state.

Execution Loss a) Force LF a) Obs. L∗
o b) Force LF b) Obs. L∗

o

Regular Supervised 243± 11 1.53± 0.23 n/a n/a
Regular Diff. Physics 22.6± 1.1 0.64± 0.08 89± 6 0.331± 0.134
Refined Diff. Physics 11.7± 0.6 0.88± 0.11 75± 4 0.126± 0.010

flows and controlled shape transitions. Example sequences are shown in Fig. 3 and a quantitative
evaluation, averaged over 100 examples, is given in Tab. 1. While all divide-and-conquer methods
manage to approximate the target state well, there are considerable differences in the amount of
force applied. The supervised technique, denoted as regular, exerts significantly more force than the
differentiable solver based methods, resulting in jittering reconstructions. A prediction refinement
scheme (denoted as refined) re-evaluates predictions over the course of a sequence. This version
produces the smoothest transitions, converging to about half the loss of the regular, non-refined
variant. For comparison, we run a classic optimization with hierarchical shooting that computes
solutions for single cases, and find that it requires 1500 iterations to compute a control function that
our trained model infers almost instantly.

The next experiment increases the complexity of the fluid control problem by adding obstacles to the
simulated domain and limiting the area that can be controlled by the network. An example sequence
using this setup is shown in Fig. 4. Here, the goal is to move the smoke from its initial position near
the center into one of the three buckets, i.e. separated regions, located at the top. The control forces
can only be applied in the peripheral regions, which are outside the visible smoke distribution. Only
by synchronizing the 5000 continuous control parameters can a directed velocity field be constructed
in the central region. We first infer trajectories using a trained CFE network and predictions that move
the smoke into the desired bucket in a straight line. This baseline manages to transfer 89%± 2.6% of
the smoke into the target bucket. Next we enable the hierarchical predictions and train the OPs. This
version manages to maneuver 99.22%± 0.15% of the smoke into the desired buckets while requiring
19.1%± 1.0% less force.

Figure 4: Example indirect control sequence. Obstacles are marked white, control regions in light
blue (at left, bottom and right sides). The white arrows indicate the velocity field. The domain is
enclosed in a solid box with an open top.

4

5 Conclusions

We have demonstrated that deep learning models in conjunction with a differentiable physics solver
can successfully predict the behavior of complex physical models and learn to control them. The
introduction of a hierarchical predictor-corrector architecture allows us to learn to reconstruct long
sequences by treating the physical behavior on different time scales separately. Based on these results,
we believe that learning differentiable physics has significant potential to provide physical intuition
for a wide range of systems that understand and interact with the real world.

Acknowledgments

Supported by ERC Starting Grant StG-2015-637014 and the Intel Network on Intelligent Systems.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In Symposium on Operating Systems Design and Implementation,
2016.

[2] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to
poke by poking: Experiential learning of intuitive physics. In Advances in Neural Information
Processing Systems, 2016.

[3] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
[4] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary

differential equations. In Advances in Neural Information Processing Systems, 2018.
[5] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter.

End-to-end differentiable physics for learning and control. In Advances in Neural Information
Processing Systems, 2018.

[6] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical in-
teraction through video prediction. In Advances in Neural Information Processing Systems,
2016.

[7] Nick Haber, Damian Mrowca, Li Fei-Fei, and Daniel LK Yamins. Learning to play with
intrinsically-motivated self-aware agents. arXiv:1802.07442, 2018.

[8] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable
physics. arXiv, 2019.

[9] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv:1509.02971, 2015.

[11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In ICML, 2016.

[12] Lev Semenovich Pontryagin. Mathematical Theory of Optimal Processes. John Wiley, 1962.
[13] Connor Schenck and Dieter Fox. SPNets: Differentiable fluid dynamics for deep neural

networks. In Conference on Robot Learning, 2018.
[14] Gordon D Smith. Numerical Solution of Partial Differential Equations: Finite Difference

Methods. Oxford University Press, 1985.
[15] Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua B Tenenbaum. Differentiable physics

and stable modes for tool-use and manipulation planning. In Robotics: Science and Systems,
2018.

[16] Paul J Werbos. Backwards differentiation in AD and neural nets: Past links and new opportuni-
ties. In Automatic Differentiation: Applications, Theory, and Implementations, pages 15–34.
Springer, 2006.

5

	Introduction
	Differentiable PDE solvers
	Learning force-based interactions
	Results
	Conclusions

