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Abstract

Conventional methods to predict 3D molecular structure are based on iterative
stochastic optimization techniques by calculating energy using physics-based elec-
tronic structure modeling such as Density Functional Theory (DFT) or Molecular
Dynamics (MD) which is computationally expensive and multi-modal by in nature.
As a cost-efficient and relatively deterministic alternative, we propose a novel
RL-based algorithm to optimize 3D structure of single molecule based on DDPG
method. Our model teaches the agent to find the best movement trajectory of
each atom to reach the correct structure by guiding their movement using three
reward approaches based on DFT calculation. Our experiment shows that our
model successfully predicts the most energetically stable 3D structure of small
aromatic-hydrocarbon molecules.

1 Introduction

In computational chemistry, a common theoretical method used to determine and optimize 3D
molecular structure is by minimizing the strain between the atoms in a given molecular system. Any
perturbation from the geometry will induce the system to change, so as to reduce this perturbation
unless preventing by external forces. Starting from the experimental geometry of molecule, we
calculate total energy of the molecule by slightly perturbing the coordinates of each atom. The
calculation of total energy can be done by using simulation methods to calculate electronic structure
such as DFT (Density Functional Theory) [18] or MD (Molecular Dynamics) [12]. From the variation
of total energy, δE(r), by chaining location of each atom, δr, we can estimate the derivative of
the energy with respect to the position of the atom, δE/δr. Then, the geometry optimization
algorithm use E(r), δE/δr and δδE/δriδrj to try to minimize the force. There are many geometry
optimization techniques which is built on minimizing the strain and the forces on a given system
between atoms such as gradient descent, conjugate gradient, or based on Newton’s method (BFGS).
There are two main challenges to use this conventional geometry optimization schemes to predict
molecular structure.

(1) Stochasticity: The geometry optimization process seeks to find the geometry of a particular
arrangement of the atom perturbed from the initial geometry. Therefore, we can find the local energy
minimum nearby initial geometry, but difficult to find a global energy minimum. Therefore, the
optimized geometry can be not actually the correct answer. Also, the choice of the initial coordinate
system can be crucial for performing a successful optimization.
(2) Computational Cost: The process to calculate total energy is repeated until the structure is
converged. Therefore, the computing cost of geometry optimization is depended by the number of
iterations to calculate energy until the structure is converged. For most large systems of practical
interest, it can be prohibitively expensive due to the cost to compute the second derivative of energy.
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Here, we propose to use the reinforcement learning technique as the optimization scheme to predict
3D geometry of small single molecule. Firstly, as the RL model learns the policy by repeating
exploration and exploitation, we can potentially explore new structural energy surface which can be
dramatically different with initial starting geometry. Therefore, the problem that output structure
can be stuck on local energy minimum nearby initial geometry [problem - 1 above] can be resolved.
Secondly, as the RL model seeks to find the best policy to achieve the goal rather than find the best
geometry itself, we can potentially reduce the number of iteration of energy calculation after the
agent successfully learn the policy to find the minimum energy structure. [problem - 2 above] As
our RL model, we used deterministic policy gradient algorithm (DDPG) algorithm [16] because
of following reasons: (1) We assume the deterministic answer (Correct molecular structure) for
the problem to prevent the case of the structure converging to the local minimum. , (2) We design
the action space as continuous (policy gradient) to allow the smooth movement of each atom in 3D
space. To demonstrate the practical use of our model, we show the preliminary results to optimize the
small aromatic-hydrocarbon molecules which have simple structural patterns with multiple benzene
rings consisted of Carbon and Hydrogen atoms. For the rigorous and physically correct structural
prediction, we elaborated physics-based DFT calculation as our reward function. By comparison
study between different formats of reward function, we found the best performing reward signal.

2 Related Work

Recently, with the popularity of deep learning, there has been many works in applying deep learning
to predicting molecular attributes [21, 4, 25, 14, 8, 6]. Most of advances in material AI built upon
graph network representing 2D molecular structure as graph which represent node as atom and
edge as the bond between atom. [7, 14, 8] However, the idea to optimize various desired physical
property objectives using graphical network can be challenging. The main difficulty arises because
these property objectives are difficult to be featurized [4] and non-differentiable. Furthermore,
the labeled molecular database is significantly limited. As the distribution of the molecules is
vast, it is challenging that the supervised neural net based model learns the entire distribution of
chemical space to predict meaningful desired properties of specific target material in limited data.
As the alternative method, there have been several advances in applying reinforcement learning
to learn physical properties of molecules. Reinforcement learning based approaches specifically
has unique advantages to be applied to molecular prediction. First, desired molecular properties
such as drug-likeness [1, 25, 17] and structural attributes such as space group or density [22] are
complex and non-differentiable. Therefore, It is difficult to be featurized and directly formulated
into the objective function of graph generative models. In contrast, reinforcement learning is capable
of directly representing hard constraints and desired properties through the design of state, action
and reward function. Second, reinforcement learning allows active exploration of the molecule
space beyond samples in a dataset. Therefore, reinforcement learning based approach can be the
alternative of supervised deep learning [26, 11, 8, 5, 14, 13]. With above strengths, several goal-
directed molecule design models based on reinforcement learning have been proposed recently. You
et al. [25] proposed GCPN (Graph Convolutional Policy Network) for goal-directed graph generation
through reinforcement learning. Gabriel et al. [10] proposed ORGAN model (Objective Reinforced
Generative Adversarial Networks) for generating drug-like SMILES strings. Mariya et al. [19]
proposed reinforcement learning based SMILE generator also using the combined approach with
GAN. However, existing molecule design models limits the structural dimension as 2D and trained
their model with data-driven reward function which is often neglecting correct physics. In this work,
we designed DFT-based reward function which can learn the physically correct policy and extend
output dimension of molecular structure to 3D.

3 Methods

In this work, we tackled the problem to learn 3D structure of small single molecules in aromatic-
hydrocarbon family. Figure 1 shows the overview of reinforcement learning setting of our proposed
model. We start from the initial structure which is the random configuration of the target molecule.
According to the initial structure, initial state tensor (S) is defined. First, the agent takes action
(a) to change location of every atoms in 3D space from current state molecular geometry. Second,
according to the action, the 3D molecular geometry is updated. Lastly, the DFT environment evaluate
total energy (Etot) from updated molecular geometry. Based on the change of energy, the agent
obtain the reward (r) by designed reward function (f ). By iterating this repeating exploration and
exploitation, the agent learns the policy to move every atoms to reach to the correct 3D molecular
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Figure 1: Our reinforcement learning setting to optimize 3D structure of single molecule

geometry (answer). We used DFT calculation as the environment to update molecular geometry and
calculate total energy from the given geometry. In this section, we explain details of reinforcement
learning setting, and construction of environment.

3.1 Reinforcement Learning Setting

(1) State :
Initial Structure: For every episode, we uses different randomized initial structure of target molecule.
To generate initial structure without significantly distort or break chemical bonds of the target
molecule, we defines rule-based algorithm as following.

1. Given SMILES [20] string of the target molecule, the 2D chemical configuration with approxi-
mated bond-lengths is obtained using RDkit [15].
2. Find two principle components of 2D structure using PCA and re-align structure accordingly.
3. Replace CH3 (C with 3 Hs) units as theoretical tetrahedron geometry, and perturb z-direction of
atoms outside of CH3 units between ±α. The value of α is the maximum of z-distortion without
breaking the chemical bonds of the molecule. We found the α by sensitivity experiment using DFT.

State Matrix: We denote St = {st0, . . . , stn−1} as a state matrix at step t, where sti ∈ R(4+2n)×1

for i = 0, . . . , n − 1, is a 1-D state vector of i − th atom where n is the total number of atoms
in target molecule. The order to traverse atoms at target molecule in State matrix, St,(ex: the
order of atoms at row direction in State matrix) is defined by Breadth-first search of 2D molecular
graph obtained from the 2nd step to generate initial structure above. After projecting structure
with two principle components, we always start to traverse atoms from the one located on lowest
value of two axes. The 1-D state vector of i − th atom, sti, is consisted with 4 + 2n elements,
such as [{ti}, {xi, yi, zi}, {c0, . . . , cn−1}i, {p0, . . . , pn−1}i], where {ti} is the type of atom (C=1,
H=0), {xi, yi, zi} is coordinate value of i − th atom in 3D space, {c0, . . . , cn−1}i is connectivity
information between i− th atom and all other atoms with traversing order, and {p0, . . . , pn−1}i is
Lennard-Jones inter-atomic potential [24] between i− th atom and all other atoms.
Stopping Criteria: There are three stopping criteria of the episode. First, when the action makes
connected two atoms way too far from each other and break the chemical bond of target molecule, the
episode is terminated with negative reward (-1). Second, when the action makes connected two atoms
way too close from each other and makes the DFT-error, the episode is terminated with negative
reward (-1). Third, when the calculated energy from DFT are in the range Eans ± 3.0eV , where
Eans is the total energy of the correct 3D structure of target molecule, the episode is terminated with
positive reward (+1).

(2) Action : We denote At = {at0, . . . , atn−1} as a action matrix at episode step t where n is the total
number of atoms and ati ∈ R3×1 for i = 0, . . . , n− 1, is a 1-D action vector of i− th atom. Each
ati is representing the movement of i − th atom in xyz coordinate. As shown in right blue box at
Figure 1, action vector, ati, is modeled by g given previous states. Formally, ati = g(st−1

0 , . . . , st−1
n−1).

We use self-attention networks for g to consider the interaction between state of each atom properly
to predict the movement of each atom.

(3) Reward : Designing reward is critical to teach agent how to perceive the environment and figure
out the best policy. For comparison study, we designed three reward functions based on the total
energy calculated from DFT. We denote rt = f(Etot) as a reward at episode step, t.
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Figure 2: 5 aromatic-hydrocarbon molecules according to crystal structure ID. (C: grey, H: white)

(a) Continuous Reward around Eans: Reward is defined as the continuous value increasing as it
approaches toEans, the total energy with the optimal 3D structure. Formally, rt = a0

a1+abs(Etot−Eans)
.

We set a0 = 4.0 and a1 = 1.0 to make the maximum reward before terminating episode by finding
answer (energy in a range of Eans ± 3.0eV ) as +1.
(b) Discrete Reward around Eans: The agent only gets reward, +1, when it terminates episode by
finding answer(Eans ± 3.0eV ). Otherwise, it gets 0 or -1 when it terminates with errors.
(c) Continuous Reward in Discrete Range: Inspired by [3], we design reward as the continuous
value which increases as decreasing total energy. First, from the experiments with five target aromatic
hydrocarbon molecules(Figure 2), we obtained the energy range that the optimal structure of the
target molecules can be in. We set Emin as -5.0 eV from the minimum total energy among five
molecules, and Emax as Emin+ 100.0 eV . We found Emin as -16810.0 eV and Emax as -16710.0
eV . We define reward as, rt =

b0∗(Emax−Etot)
abs(Emax−Emin)

. We set b0 = 1.0 to make the maximum reward
before terminating as closer to +1. Unlike 1 and 2, the total energy of the answer, Eans, is not
required before starting the episode. Therefore, this reward can be applied to any unknown aromatic
hydrocarbon molecules with same size as our test cases without pre-evaluation of DFT energy.

4 Experiment and Results

To simplify the problem, we hand-picked 5 simple aromatic-hydrocarbon molecules from Cambridge
Structure Database [9] ( Figure 2) which have three benzene rings consisted with 16 Carbon(C) and
14 Hydrogen(H) atoms. We constructed general simulated physical environment setting based on
DFT which can represent each of test molecule. We used DFT calculation as the environment to
update molecular geometry and calculate total energy from the given geometry. We use FHI-aims
DFT software-package [2]. We compute energy of the target molecule in the vacuum condition (No
k-point mesh) and used the local-density approximation (LDA) [23].

For the comparison, we trained the policy for each target molecule using three reward approaches
above and optimized the 3D structure of target molecule using the learned policy. Figure 3-(a,b)
shows the learning curves to optimize DACXAI molecule over 1850 episodes, where (a) shows
the reward that agent obtains over episodes and (b) shows the critic loss in DDPG defined as the
difference between time-dependent target with respect to the output of the critic network sampled for
each step. As Figure 3-(a,b) shown, reward-(b) (discrete reward: orange) outperforms than continuous
rewards ((a) blue, (c) green) with highest rewards and lowest losses. Reward-(c) shows slightly better
than reward-(a) in its reward and loss curve. We hypothesize that a primary reason that reward-(c) is
better than reward-(a) is that it is easier task for the agent to optimize the structure with lowest energy
(reward-(c)) than locate the structure in the specific energy windows (reward-(a)). Figure 3-(c) shows
the inference results to find optimal DACXAI structure with the policy trained with the reward-(b)
which is the best performing reward among three. Eans is -16810 eV and yellow region on graph
denotes the region considered as the answer (Eans±3eV ). Two episodes found answer in 3 steps and
one episode found answer in 11 steps, which is significantly less than steps required for conventional
method by energy gradient, which usually is more than several hundreds.

Figure 3: Learning curves (a,b) and inference results(c) to optimize DACXAI molecule.
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