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Abstract

Generative modeling with machine learning has provided a new perspective on the
data-driven task of reconstructing quantum states from a set of qubit measurements.
As increasingly large experimental quantum devices are built in laboratories, the
question of how these machine learning techniques scale with the number of qubits
is becoming crucial. We empirically study the scaling of restricted Boltzmann
machines (RBMs) applied to reconstruct ground-state wavefunctions of the one-
dimensional transverse-field Ising model from projective measurement data. We
define a learning criterion via a threshold on the relative error in the energy estimator
of the machine. With this criterion, we observe that the number of RBM weight
parameters required for accurate representation of the ground state in the worst
case – near criticality – scales quadratically with the number of qubits. By pruning
small parameters of the trained model, we find that the number of weights can be
significantly reduced while still retaining an accurate reconstruction. This provides
evidence that over-parametrization of the RBM is required to facilitate the learning
process.

1 Introduction

Generative models are machine learning algorithms that seek to reconstruct an unknown probability
distribution p(x) from a set of data x. While several generative modeling techniques are available for
quantum state reconstruction, by far the most well-studied involves restricted Boltzmann machines
(RBMs) [37, 36, 12, 13, 9]. We present a systematic study of the scaling of the computational
resources required for accurate reconstruction of a quantum state with an RBM. In particular, we
focus on the ground-state wavefunction of a one-dimensional transverse-field Ising model, which
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has a positive-real representation. Our training data is a set of projective measurements sampled
independently from a simulated tensor-network wavefunction. We define a learning criterion based
on the accuracy of the energy estimator of the RBM. The state reconstruction is considered successful
when the relative error of the energy estimator is smaller than a fixed threshold. We target in particular
two contributions to the asymptotic scaling behavior in the many-qubit limit: the representational
power of the RBM, i.e., the expressiveness of the parameterization of the state, and the amount of
data required to train the model, also known as the sample complexity.

We find that deep within the ferromagnetic and paramagnetic phases, the number of RBM parameters
required for accurate representation of the ground state is O(1). As the transverse field is varied to
approach the quantum critical point between these two phases, the state becomes more challenging
to reconstruct, as expected due to long-range quantum correlations that arise there. At the critical
point, we observe that under standard RBM training procedures the number of parameters grows
quadratically in the number of qubits, O(N2). The minimum number of measurements required
to train this number of parameters scales linearly with the number of qubits, O(N). Interestingly,
we find that the number of parameters required for an accurate reconstruction can be significantly
reduced post-training by pruning small weights and fine-tuning the RBM by a small number of
additional training iterations. We argue that an RBM requires over-parameterization to facilitate the
optimization procedure associated with learning.

2 Defining a scaling study

The goal is to find the asymptotic scaling of the computational resources required to reconstruct a
quantum state using an RBM. The training set comprises projective measurement data produced from
the ground-state wavefunction of the one-dimensional transverse-field Ising model (TFIM) defined
by the Hamiltonian

H = −J
∑
〈ij〉

σz
i σ

z
j − h

∑
i

σx
i , (1)

where σx,y,z are Pauli operators, defined over N sites (or qubits), and 〈ij〉 denotes nearest-neighbor
pairs on a one-dimensional lattice with open boundary conditions. This model is thoroughly studied
in the condensed matter and quantum information literature, and serves as a standard benchmark for
many numerical methods. We generate training data from a density matrix renormalization group
(DMRG) simulation [15] for various values of h/J using the ITensor library [1]. The measurements
of the ground-state wavefunction are produced in the σz basis. The Perron-Frobenius theorem
guarantees that when the Hamiltonian Eq. (1) has negative off-diagonal matrix elements in the
σz (computational) basis, the ground-state wavefunction is positive-real. Thus, there is a direct
mapping between the wavefunction and a probability distribution, ψ(σ) =

√
p(σ). This allows for a

significant simplification in the RBM network structure, since complex phases or signs need not be
parametrized. In addition, the computational basis is trivially informationally complete, enabling
training from data produced only in the σz basis [36].

2.1 Restricted Boltzmann machine

The RBM consists of two layers of binary variables vi, hj ∈ {0, 1}. The energy associated with
each configuration is given by Eλ(v,h) = −∑ij Wijvihj −

∑N
i bivi −

∑Nh

j cjhj , where N is
the number of visible units, representing the qubits or spins, and Nh is the number of hidden units
parametrizing the interactions. The two layers are fully connected via the weight matrix W that,
along with the bias terms bi and cj , forms the set of learnable parameters λ = (W , b, c). The
energy function defines the joint probability distribution pλ(v,h) = exp[−Eλ(v,h)]/Zλ, where
Zλ is the partition function of the machine. The marginal distribution pλ(v) =

∑
h pλ(v,h) =∑

h exp[−Eλ(v,h)]/Zλ is obtained by tracing out the hidden units. It is this marginal distribution
that forms the approximate representation of the ground state, ψλ(v) =

√
pλ(v). Therefore, the

training procedure is equivalent to conventional unsupervised learning of an RBM [3]. In particular,
the objective of the training procedure is to minimize the Kullback-Leibler (KL) divergence, which
defines the discrepancy between the distribution of projective measurements and the probability
distribution parameterized by the RBM, through a method known as contrastive divergence [20]. We
use the QuCumber software package to implement and train a positive-real RBM [7].
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2.2 Learning criterion

In order to quantify the resources required for the data-driven reconstruction of the ground-state
wavefunction for the TFIM, one must be able to assess when the learning is “complete”. We define the
learning criterion as follows: Take Ū = 〈H〉RBM to be the average of the energy estimator calculated
from n samples generated by the RBM. Since n is finite, a statistical error exists in the estimator,
quantified by the standard deviation σ. To account for this in a relative error measure, we compute
the Gaussian confidence interval given by Ū ± Cσ/√n. The value of C = 2.576 corresponding to
99% confidence will be used throughout this paper. If U = 〈H〉exact is the exact value of the energy
estimator (calculated with DMRG), then we can upper-bound the ROE by the larger relative error
value of the confidence interval: ε = max

∣∣[U − (Ū ± Cσ√n))
]
/U
∣∣. Essentially, this means that

we consider the learning to be “complete” when our desired upper bound on the ROE is satisfied 99%
of the time on our sample size. We find empirically that ε = 0.002 is a reasonable value that can be
achieved by RBMs trained on TFIM data with conventional algorithms for N ≤ 100 qubits.

3 Results
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Figure 1: (a) The procedure used to determine the required RBM expressiveness for N = 50 qubits
at h/J = 1. The number of hidden units Nh is increased until the desired ε is achieved. Inset:
Nh required for convergence to ε ≤ 0.002 for different values of h/J . The position of the peak is
discussed in the main text. (b) Weight magnitudes, sorted in descending order from left to right,
for various transverse field values and N = 60. Converged RBM models from the parameter study
shown in Fig. 1c are used here. (c) Minimum Nh required for ε ≤ 0.002 for various values of h/J .
Straight lines are fits to the data.

3.1 Scaling of the model parameters

To determine the minimal number of RBM parameters required to faithfully reproduce the ground-
state energy of an N -qubit system, we study the scaling of the number of hidden units Nh. For
each value of N , we produce projective measurements of σz values using the DMRG simulation of
the TFIM. Then, effectively assuming that the number of available training samples M →∞, we
increase the number of hidden units Nh until the learning criterion is uniquely satisfied for each value
of N .
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Table 1: The number of weights required to achieve ε ≤ 0.002 at the critical point h/J = 1.

N 10 20 30 40

original 50 200 420 760
pruned 20 50 79 119

This procedure is illustrated in Fig. 1a for a fixed system size of N = 50. In the main plot,
corresponding to h/J = 1 (critical point), we observe that the minimum number of hidden units
required to accurately represent the ground-state wavefunction is Nh = 25. The inset illustrates the
dependence of Nh on field values near h/J = 1. One would expect that in the limit N → ∞ the
number of parameters required would be maximal at h/J = 1. Curiously, we find that this peak
occurs around h/J ≈ 0.8, slightly on the ferromagnetic side from the critical point. We hypothesize
that this feature is tied to the magnetization of the underlying dataset used for training, which was
produced by our DMRG simulations in ITensor. The result of repeating the above procedure for
various numbers of qubits N is illustrated in Fig. 1c. For values of h/J far from the critical point, the
required minimum number of hidden units scales as Nh ∼ O(1) in the asymptotic limit of large N .
This reflects the informational simplicity of the dataset in these regimes. Near h/J ≈ 1 the scaling
of Nh is clearly linear, meaning that the leading asymptotic scaling of the number of parameters is
O(N2), as each additional hidden unit quadratically scales the number of parameters in the weight
matrixW . Finally, we note that for larger ROE thresholds ε > 0.002 the prefactors and slopes are
different, but the asymptotic scaling of the number of hidden units still remains linear near criticality.

3.2 Reducing the number of model parameters post-training

Implicit in the scaling result Nh ≈ 1
2N from the previous section is the RBM optimization procedure:

a stochastic gradient descent that minimizes the KL-divergence. This raises the question: Is it
possible to find more efficient representations by modifying the learning protocol? Indeed, it has
been found that the over-parameterization inherent to deep neural networks can ease and accelerate
their optimization by (stochastic) gradient descent [29, 28, 5, 4, 35]. Figure 1b offers a clue that
the RBM parameterization may not be optimal for the final trained wavefunction by demonstrating
that the distribution of the weight magnitudes in a trained RBM is non-uniform. Recent machine
learning literature has studied the relative importance of smaller weights with a procedure called
pruning. Following the ideas of Refs. [19, 32], we define a pruning procedure for our scaling study in
the following steps: (1) Start from the original, converged trained model. (2) Set a threshold δ for
the weight magnitudes. If a given |Wij | < δ, set Wij = 0, and freeze it for the following steps. (3)
Fine-tune the pruned model by running several more training iterations until the desired accuracy is
restored. (4) Repeat steps 2-4, pruning additional weights until the model fails to fulfill the learning
criterion. We choose the pruning threshold such that 40% of the non-zero weights are pruned in the
first iteration, and 5% of the non-zero weights in each following iteration.

We apply weight pruning to our trained RBM focusing on the critical point of the TFIM, and find that
a significant reduction in the number of RBM parameters required to correctly capture the critical
TFIM ground-state energy can be achieved for all system sizes. The results for several small numbers
of qubits are presented in Table 1. We interpret this to mean that the standard training of an RBM
benefits from employing more weights than is strictly required for accurate expression of the TFIM
wavefunction in order to make the optimization more navigable. The success of the pruning procedure
opens up the possibility of systematically searching for a change in scaling behavior. However, due
to the significant increase in methodological complexity introduced by the pruning procedure, this
analysis is out of scope for the current study and will be presented in another work.

4 Discussion

We have empirically studied the scaling of computational resources required for the accurate re-
construction of positive-real wavefunctions using generative modeling with a restricted Boltzmann
machine (RBM), evaluated based on the relative error between the RBM estimator and the exact
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energy value obtained from DMRG simulations.2 For a standard optimization procedure with con-
trastive divergence, the number of weight parameters required for accurate reconstruction is at best
constant (deep in the ferromagnetic/paramagnetic phases), and at worst quadratic (near the quantum
critical point between the two phases). By employing a pruning technique, we present evidence
that the number of parameters required to represent the ground state is drastically affected by the
RBM learning procedure.It would then be interesting to compare the obtained results to theoretical
expectations for the representational capacity of RBMs required for quantum ground-state wave-
functions [12, 17, 18]. It is natural to wonder what the scaling of computational resources is for
reconstructing quantum states that are not real or positive. This question is especially pertinent for
state-of-the-art experiments, such as fermionic quantum simulators [30], wavefunctions generated by
quantum dynamics [26, 25], or quantum chemistry calculations with superconducting circuits [24].
In contrast to positive wavefunctions, the reconstruction (with a suitably modified RBM) demands
training data from an extended set of measurement bases. The ability to theoretically identify the
minimal set, and how the size of this set scales with the number of qubits, will ultimately determine
the feasibility of integrating this type of machine learning technology into such near-term quantum
devices.
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