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Following fascinating success in image and speech recognition tasks, machine learning (ML) methods
have recently proven themselves to be very useful in physical sciences. For example, ML has been
used to classify phases of matter [1], to enhance quantum state tomography [2], to bypass expensive
dynamic ab initio calculations [3], and much more [4]. The ML ideas also helped to take a novel and
fresh look at the concept of variational Monte Carlo [5]. A simple yet very generic variational ansatz
that inherits the structure of a certain neural network (Restricted Boltzmann Machine) was suggested.
For the test cases of one- and two-dimensional Heisenberg and transverse field Ising models, it was
demonstrated that, optimizing this ansatz with the Stochastic Reconfiguration (SR) scheme [6], one
can achieve high accuracy in approximating ground states of systems of up to hundreds of spins,
sometimes outperforming the state-of-the-art methods.

Although a variational wave function with a network structure may be able to approximate the ground
state really well, in some cases the desired point in the space of variational parameters can be hard
to reach, and learning algorithm hits a saddle point before approaching the solution. This results in
a large relative energy error and a low overlap between the NQS and the actual exact ground state,
making the obtained solution almost useless for computing physical observables such as electric
conductivity or spin-spin correlation functions. This problem is particularly pronounced for systems
where the energy gap between the ground state and the first excited state is very small, like for
frustrated spin systems such as J1 − J2 antiferromagnetic Heisenberg model on square lattice [7], or
the Fermi-Hubbard model away from the neutrality point [8].

So far, significant effort has been put into the search for neural quantum states architectures that have
good expressibility, – a potential capacity to represent a many-body wave function with high accuracy
using a moderate number of parameters [9, 10, 11]. At the same time, there is another issue that is
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Figure 1: The three studied cases of the frustrated antiferromagnetic Heisenberg model: next-nearest
neighbor J1−J2 model on a square lattice (left), nearest-neighbor model on an anisotropic triangular
lattice (middle), spatially anisotropic Kagome lattice (right). In all cases J2 = 0 corresponds to the
absence of frustrations.

not widely discussed in this context. In the variational optimization schemes, an ansatz is adjusted
iteratively in a certain way, so that we expect the system to end up in the lowest energy state allowed
by the form of the ansatz [12, 6, 13]. At each step of this iterative procedure, one has to evaluate the
change of the trial wavefunction parameters, induced by the evolution operator: ψn(σ)→ ψn+1(σ).
Evaluation of the NN weights describing the state ψn+1(σ) relies on MC sampling from basis of the
Hilbert space of the model, and for large systems the total number of samples is negligibly small in
comparison with the dimension of the Hilbert space. Hence, it is of crucial importance for the NN
to accurately generalize onto a larger subspace that was not sampled in the course of learning and
correctly predict phases and amplitudes of the wave function on the full set of basis vectors.

While the generalization issue concerns both phases and amplitudes, it turns out that these two
components of the wavefunction behave differently in this respect. Already from the first works in the
field, it seemed plausible that effectiveness of NN as variational ansatz is somehow connected to the
sign structure of the models. For instance, in [5], even for the unfrustrated Heisenberg antiferromagnet
on a square lattice, the Hamiltonian must first be brought into stoquastic (sign-definite) form by a
unitary transformation in order to reduce noise and attain proper level of convergence (see also [14]).
As another example, let us note that in recent study [13] it was stressed that biasing the NQS anzats
with certain predefined (heuristic) sign structures is very important for performance of the method.
Therefore, although we will study both aspects, special attention will be paid to the sign structure.

1 Models of interest

We consider several antiferromagnetic spin models described by the Heisenberg Hamiltonian:

Ĥ = J1
∑
〈a,b〉

σ̂a ⊗ σ̂b + J2
∑
〈〈a,b〉〉

σ̂a ⊗ σ̂b , (1)

where, for each lattice geometry, the first sum is taken over the unfrustrated sublattice (solid lines in
Fig. 1), and the second sum is taken over the sublattice that brings in frustrations (dashed lines in
Fig. 1). Namely, we consider J1 − J2 model on a square lattice [15, 16] and the nearest-neighbor
antiferromagnetic on spatially anisotropic triangular [17] and Kagome [18, 19] lattices.

For every model, its ground state belongs to the sector of minimal magnetization, thus the dimension
of the corresponding Hilbert space is K = CN[N/2] (where N is the number of spins). It is convenient
to work in the basis of eigenstates of σ̂z operator: |S〉 ∼ | ↑↓ . . . ↓↑〉. In this basis the Hamiltonian
Ĥ is real-valued. The ground state is thus also real-valued, and every coefficient in its basis expansion
is characterized by a sign si = sign(ψi) (instead of a continuous phase):

|ΨGS〉 =

K∑
i=1

ψi|Si〉 =

K∑
i=1

si|ψi||Si〉. (2)

By running numerical experiments, we shall demonstrate that it is indeed the lack of generalization
that prevents a neural quantum state from accurately learning the signs of the wavefunction, even
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though expressibility of the corresponding ansätze could be good enough. Our strategy is to consider
exact ground states of the models and test how well NN can predict sign structure of the whole state
when they are given only a small fraction of it during training. We shall demonstrate that, when the
models are interpolated between unfrustrated and fully frustrated regimes, networks’ generalization
abilities change in a non-trivial way, becoming very poor in certain cases. This motivates a search for
neural quantum states architectures with better generalization capacity.

For the three models defined above, we systematically study the generalization properties of NNs
(separating the signs from the amplitudes) of different architectures varying the degree of frustration
(controlled by J2/J1) and the size of the training dataset.

2 Methods

In this study, we use feed-forward networks of three different architectures (dense 1-layer, dense
2-layer, and convolutional 2-layer) to encode wavefunction coefficients via splitting them into
amplitudes and signs. All of our networks have the same input format: spin configuration |Si〉 =
|σ1σ2 . . . σN 〉 represented as a binary sequence, σk = ±1. Network encoding amplitudes outputs
a real number, natural logarithm of the amplitude. Network encoding sign structure outputs a real
number p ∈ [0, 1] interpreted as a probability for the corresponding sign to be plus. Thus, unlike
the approach of [5], we represent wavefunction sign using a binary classifier. Both networks are
trained on data obtained from exact diagonalization. We sample εtrain ·K spin configuration from the
Hilbert space basis according to probability distribution P (i) = |ψi|2∑

j |ψj |2 . They constitute the training
dataset. In practical applications of NQS [5, 20, 7], SR [21, 6], Stochastic Gradient Descent [22, 23],
or Generalized Lanczos [12], the training dataset is generated by Monte Carlo sampling from basis
of the Hilbert space of the model, and, since dimension of the latter grows exponentially with the
number of spins, only a tiny fraction of it can be covered with a Monte Carlo chain in reasonable
time. Therefore it is natural to mimic this incomplete coverage with εtrain � 1.

To assess the performance of the NNs we evaluate overlap (scalar product) between exact eigenstate
and the trial state. A trial state for sign NN is defined as a state with exact amplitudes but with sign
structure encoded in a NN. Analogously, a trial state for amplitude NN is obtained by superimposing
the exact sign structure onto the positive amplitudes, predicted by an amplitude NN. Code to reproduce
our results and more details about the training scheme can be found on GitHub [24].
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Figure 2: Overlap of the variational wave function with the exact ground state as a function of J2/J1
computed for the square (left), triangular (center), and Kagome (right) lattices. Overlap was computed
on the rest dataset (not included into training and validation datasets). Note that generalization is
poor in the frustrated regions (which are shaded on the plots). We also show some preliminary results
for larger clusters.
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3 Results

We have analyzed how NNs learn ground state structures of three lattice models, in each case consid-
ering periodic clusters of 24 spins4. Effective dimension of Hilbert space in the zero-magnetization
sector is d = C24

12 ' 2.7 · 106.

Fig. 2 shows how well a model trained on a small subset (1%) of the Hilbert space basis, predicts
the sign structure on the remaining basis vectors unavailable to it during training. For all three
models we see that behavior of generalization quality, albeit different, reflects very well the known
phase transitions with generalization being easy in ordered phases and becoming notoriously hard
in disordered phases. Note also that different neural networks may generalize very differently: in
particular, as shown on the left panel of Fig. 2, dips in performance of convolutional NNs are much
smaller than those for dense networks for the square lattice model. We believe that experiments of
this kind would help to choose proper architectures to be used in iterative diagonalization schemes.

It is very important to distinguish the ability to represent the data from generalization. In the context
of NQS, the former means that a NN is able to express complex quantum states well if training was
conducted in a perfect way. We observe that perfect expressibility (overlap = 1) is indeed possible if
the training set is large enough – meaning that the network can represent the target state very well.
However, this ability does not automatically make a neural network useful if it cannot generalize
well. It is important to study how generalization quality changes when size of the training dataset is
increased. Results for Kagome lattice are shown on the left panel of Fig. 3. Interestingly, even in
the frustrated phase (J2 = 0.6) it is possible to generalize reasonably well from a relatively small
subset of the basis states, but the required εtrain becomes substantially larger than in the magnetically
ordered phase. Most importantly, the ability of the NN to generalize establishes in an abrupt manner
contrary to more typical smooth behavior observed in statistical models of learning [25, 26, 27].
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Figure 3: Left: Dependence of generalization quality measured by overlap between the variational and
the exact states on the size of the training data set εtrain for Kagome model for J2 = 0.4, 0.5, 0.6, 1.0.
Right: Comparison of generalization quality as measured by overlap for learning the sign structure
(red) and amplitude structure (blue) for Kagome lattice for 2-layer dense architecture. Note that both
curves decrease in the frustrated region, but sign structure is much harder to learn.

One may wonder whether it is indeed the signs rather than amplitudes which are responsible for
the difficulty of learning the wavefunction as a whole. To prove this statement, we conduct the
following analysis. In the context of learning, overlap between a trial wavefunction and the target
state can be used to characterize the effectiveness of NNs in two different ways. First, one can fix the
amplitudes of the wavefunction and use a NN to predict the signs. This produces a trial wavefunction
ψsign. Alternatively, one can fix the sign structure, and encode the amplitudes in a NN to get a trial
wavefunction ψamp. Using the Kagome lattice as an example, on the right panel of Fig. 3 we show
that although prediction of both signs and amplitudes becomes harder at the point of phase transition
J2/J1 = 0.51, drop in the sign curve is much larger, and at even higher J2 the quality of the learned

4For some architectures, we also provide results for 30-spin clusters
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states becomes too poor to approximate the target wavefunction. At the same time, even deeply in the
frustrated regime generalization of amplitudes, given the exact sign structure, leads to a decent result.

4 Discussion

We have demonstrated that generalization may indeed be an essential factor that is likely responsible
for spoiling the convergence of NQS in a number of physically interesting cases such as frustrated
quantum spin systems. Our main observation which is qualitatively valid for all the studied models
and NN architectures is that a NN fails to generalize the distribution of signs in the ground state of a
many-body system with competing interactions in the regime of strong frustrations if the training
is done on a small fraction of basis states. At the same time, even simple neural networks seem to
have no problem in generalizing amplitudes from the training dataset onto the full Hilbert space,
and have very good capacity to express both sign and amplitude distributions of the studied states.
This understanding gives us a possibility to formulate a very concrete and simple test for future NQS
architectures that will be used for studying ground state physics of many-body quantum systems:

A neural quantum state can be trained to approximate ground state of a large-scale many-body system
only if it is capable of generalizing sign structure of a moderately-sized (exactly solvable) system
ground state.

Finally, it is worth mentioning that, while the dip in generalization is not desirable in the context of
variational energy optimization, it could be used as a tool to identify – in a completely unsupervised
manner – the position of the phase transitions, similarly in spirit to approaches of [28, 29, 30, 31].
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