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Abstract

We extract restricted Boltzmann machine (RBM) wavefunctions from data pro-
duced by a Rydberg atom quantum simulator, and apply a novel regularization
technique to mitigate the effects of measurement errors in the training data. Recon-
structions of modest complexity are able to capture observables not accessible to
experimentalists.

1 Introduction

Quantum state tomography [1] is an important tool for reconstructing generic quantum states, but
traditional techniques require a number of measurements scaling exponentially in the system size [2].
In certain cases, methods that exploit particular entanglement properties [3, 4, 5, 6] allow for more
efficient tomography of states prepared in experiment. However, such approaches still involve explicit
reconstruction of local density operators [7, 3], incurring a significant computational overhead –
especially in the presence of measurement errors. In order to facilitate the characterization of
simulators that are currently being realized experimentally [8], a reconstruction method which can
efficiently extract physical quantities of interest directly from noisy experimental datasets is highly
desirable. As the quantum state may be regarded as a structured distribution over measurement
outcomes, unsupervised learning methods are naturally suited to this task. We demonstrate how a
simple modification of the restricted Boltzmann machine can be trained in a noise-resilient fashion to
produce nontrivial observables, using data from a real quantum simulator.

1.1 Related work

Several efficient tomographic methods have been developed based on targeting states with partic-
ular entanglement properties [3, 4, 5, 6] or symmetries [9]. Unsupervised learning methods for
reconstruction have recently been developed: restricted Boltzmann Machines were first applied to
problems in classical statistical physics [10], and later to the generic many-body state tomography
problem [11, 12]. Generalizations of this wavefunction approach to mixed states have been devel-
oped [13], as well as alternative methods based on generative modeling of POVM distributions [14].

Experimentally, reconstructions of seven- and fourteen-qubit systems [5, 6] have been demonstrated,
using compressed sensing and matrix product state-based methods. For low-dimensional systems,
supervised methods have been applied to denoising in a tomographic context [15].

The problem of denoising has been studied extensively in the machine learning [16, 17] and biol-
ogy [18, 19] communities. Modifications to the RBM similar to the one we use here have been
applied to occluded image restoration [20].

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.



1.2 Contributions

We demonstrate unsupervised learning of states produced by a strongly interacting quantum simulator.
We implement an efficient procedure for denoising the full probability distribution from bit-flip-type
measurement errors, by incorporating a dedicated “noise layer” in the network architecture. We test
the validity of our approach by comparing predictions of the trained RBMs with numerical results for
observables that are inaccessible in experiment.

2 Methods

2.1 Experimental system

Our experiment [21, 22] consists of a Rydberg atom quantum simulator, a neutral-atom system for
realizing Ising-type quantum spin models. In the experiments utilized in this study, a one-dimensional
array of N = 8 trapped Rubidium atoms is prepared. Each atom can occupy a ground state |g〉 or an
excited (Rydberg) state |r〉. When subjected to a uniform laser drive, the effective Hamiltonian of the
many-body system may be written as [21]

Ĥ(Ω,∆) = −∆
N∑
i=1

n̂i −
Ω

2

N∑
i=1

σ̂xi +
∑
i<j

Vnn
|i− j|6

n̂in̂j , (1)

where Vnn is the interaction strength between Rydberg atoms at adjacent sites, σ̂αi , with α = x, y, z,
are the Pauli pseudo-spin operators at site i (defined as σ̂zi = |ri〉〈ri| − |gi〉〈gi|, σ̂xi = |ri〉〈gi|+ h.c.,
etc), and n̂i = 1

2 (1 + σ̂zi ) projects onto the Rydberg state at site i. The parameters Ω,∆ denote the
effective Rabi frequency and detuning, respectively, which characterize the laser drive, and can be
varied in time as Ω(t),∆(t). The atoms are initially pumped into the state |g g g g g . . . 〉, coinciding
with the ground state of Hamiltonian (1) at t = 0, and then evolve adiabatically under a “sweep”
of the laser parameters Ω(t),∆(t) for a time Tev. Our goal is to demonstrate efficient, accurate
reconstruction of all intermediate states in the sweep.

Measurement data consists of a collection ofN -bit strings τ = (τ1, . . . , τN ), with τj = 0, 1 indicating
that atom j was recorded as being in the ground |g〉 or Rydberg state |r〉 respectively. There are small
measurement error probabilities p(1|0) ∼ 1%, p(0|1) ∼ 4% [23] for an atom in the ground state to
be recorded as excited and vice-versa, resulting in imperfect experimental data τ . The distribution
sampled in experiment is therefore related to the underlying state as Pexp(τ ) =

∑
σ p(τ |σ)〈σ|ρ̂|σ〉,

where p(τ |σ) =
∏N
j=1 p(τj |σj) is the probability of recording bitstring τ when the atoms are

prepared in the state |σ〉.

2.2 Wavefunction model

As Hamiltonian (1) is stoquastic [25], its ground state has real, positive amplitudes in the occupation
number basis |σ〉 = |σ1, . . . , σN 〉, defined as the simultaneous eigenstates of n̂1, . . . , n̂N . Therefore,
if the state of the simulator evolves adiabatically and with negligible loss of purity, it is uniquely
characterized by the probability distribution p(σ) it assigns to projective measurements in the |σ〉
basis, and may be written as the pure state |ψ〉 =

∑
σ

√
p(σ)|σ〉.

We parametrize p(σ) with an RBM [26, 27], a generative model composed of a stochastic neural
network with two layers of binary units, a visible layer σ and a hidden layer h. The marginal
distribution over visible variables is

pλ(σ) =
1

Zλ

∑
h

e h
>Wσ+b·σ+c·h (2)

where Zλ is a normalization constant, and the real-valued network parameters are λ = {W , b, c},
withW being the weights connecting the two layers and b (c) the visible (hidden) bias vectors. We
use the visible layer of the RBM to define the projective measurement distribution p(σ) of the pure
state: ψλ(σ) = 〈σ|ψλ〉 =

√
pλ(σ).

Three-layer extension The experimental measurement process is incorporated into our model
via a third binary layer, the so-called noise layer, which represents the observed POVM outcomes
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Figure 1: Model summary. Left: graphical model used for training on noise-corrupted data. For given
measurement error rates, the pre-noise RBM distribution pλ(σ) induces a distribution p̃λ(τ ) over
observations τ , which can be used to fit the RBM parameters via standard log-likelihood methods.
Right: a summary of training quality on simulated data, both with (b) and without (a) a realistic
decoherence model. The quantum state fidelity F between the reconstruction ρ̂λ and the ground-truth
state ρ̂ – a measure 0 ≤ F ≤ 1 of reconstruction quality [24] – is plotted as a function of detuning for
a simulation of the experimental sweep. The solid red and green lines are the fidelity after training on
noise-corrupted data with and without noise-layer regularization, respectively; as a benchmark, the
dashed green line shows the fidelity of a two-layer RBM trained on noise-free data.

τ . The measurement error rates p(τ |σ) are included as connections between the visible and noise
layers (Fig. 1), by assigning a probability p̃λ(τ ) =

∑
σ p(τ |σ)pλ(σ) to the measurement result

τ . For a dataset D of observations τ , the RBM is trained to minimize the negative log-likelihood
Lλ = − 1

|D|
∑
τ∈D log p̃λ(τ ). The corresponding gradient is

∇λLλ = Eσ∼pλ(σ) [∇λEeff(σ)]− 1

|D|
∑
τ∈D

Eσ∼p̃λ(σ|τ ) [∇λEeff(σ)] (3)

where Eeff(σ) = b · σ +
∑
j log

(
1 + e

∑
iWjiσi+cj

)
, and p̃λ(σ|τ ) = p(τ |σ)pλ(σ)

p̃λ(τ ) . This posterior
probability can be computed efficiently using Gibbs sampling, since the conditional

p̃λ(σ|τ ,h) =
∏
i

p(τ |σi)pλ(σi|h)∑
σ′
i=0,1 p(τ |σ′i)pλ(σ′i|h)

=
∏
i

p̃λ(σi|τ ,h) (4)

is tractable.

During training, the noise layer acts as a buffer between the noisy data and the RBM, preventing the
parameters from λ from fitting to spurious features in the data produced by measurement errors. This
noise layer regularization significantly improves the fidelity between |ψλ〉 and the state ρ̂ underlying
the data; tests (Fig. 1a,b) based on numerical simulation of our experiment result in fidelities greater
than 90% for the full many-body state at the end of the sweep.

2.3 Dataset construction and training

At fifteen subsequent time-steps t, the sweep was halted and a dataset of around 3,000 measurements
τ was sampled from the state ρ̂(t). These were used to train three-layer models with 2N = 16
hidden units; a scaling analysis in the hidden layer size was performed to ensure that the networks
had sufficient capacity. Training was performed using stochastic gradient descent with a decayed
learning rate, the gradients being estimated via contrastive divergence [28] with k = 30 sampling
steps. We found it beneficial to set the model’s error rates to zero for the first epoch of training.

After training the networks, standard sampling methods can be applied to compute expectation values
of observables, with a computational cost scaling polynomially in the network size; in this work the
Hilbert space dimension was small enough that observables could be computed exactly.
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Figure 2: Reconstructed observables. Comparison of the RBM reconstruction (squares) with the
experiment results (crosses) and the predictions from our Lindbladian master equation (circles).The
values reported in (a) for the RBM and Lindbladian observables are computed including the known
measurement error rates p(0|1) = 0.04, p(1|0) = 0.01. (a) Nearest-neighbor correlations ḡzz(s)
in the z basis, defined as ḡzz(s) = 1

N−s
∑N−s
i=1 〈σ̂zi σ̂zi+s〉c, at ∆ = 10MHz. Here 〈σ̂zi σ̂zj 〉c =

〈σ̂zi σ̂zj 〉− 〈σ̂zi 〉〈σ̂zj 〉 denotes the two-point correlation function. (b) Spatial average x̄ of the transverse
field 〈σ̂xi 〉. (c) Rényi mutual information. The quantum (Rényi) mutual information I2 is defined as
I2(s) = S2(ρ̂As ) + S2(ρ̂Bs )− S2(ρ̂), where S2(ρ̂) = − log Trρ̂2 is the second-order Rényi entropy,
ρ̂ is the (mixed) state of the whole system, and ρ̂As , ρ̂

B
s are the reduced density matrices for the

subsystems As = {1, ..., s}, Bs = {s + 1, ...N} defined by a partitioning of the system at bond
(s, s+ 1). The mutual information is plotted for a partition at bond (3,4), as a function of detuning.
Inset: The mutual information I2(s) as a function of the cut bond s for ∆ = 10 MHz.

3 Results

Fig. 2 presents some observables reconstructed from experimental data. The networks learn the strong
two-body correlations 〈σ̂zi σ̂zj 〉c present in the experimental data, as seen in Fig 2a; such statistics,
which are diagonal in the measurement basis, provide a simple check on the quality of RBM training.
We also compare the results of the reconstruction process to the exact solutions of a Lindblad master
equation for the full many-body evolution – our simulation predicts significantly weaker correlations,
suggesting our model for the sweep dynamics is partially incomplete. In experimentally inaccessible
quantities, such as the average transverse field (Fig. 2b), the reconstructions are in excellent agreement
with simulation, albeit predicting somewhat larger values in the ordered phase.

From RBM wavefunctions, the quantum Rényi entropy – which requires specialized or hardware-
specific protocols to access directly in experiment [29, 30] – may also be extracted in a scalable
fashion by applying a state-replication and swap procedure virtually [31, 11]. In fact, for pure
experimental states, positive-pure ansatzes such as the RBM wavefunction provide a lower bound on
the mutual information defined by the Rényi entropy ([32], [33]), regardless of the sign structure of
the true state. We demonstrate a reconstruction of the mutual information defined by the second-order
Rényi entropy in Fig. 2c, finding that the RBM values are in remarkable agreement with the results of
numerical simulation.

4 Conclusions

We have demonstrated unsupervised learning of quantum states from data produced by a Rydberg-
atom quantum simulator. RBMs were trained in a noise-regularized fashion in a single measurement
basis, then queried to produce a variety of observables not directly accessible in experiment. This
approach can be integrated without alteration into experimental platforms where a positive wavefunc-
tion ansatz is a valid approximation, such as Bose-Hubbard experiments and some non-frustrated
quantum spin simulators [34, 35, 36, 37]. If measurements in multiple bases are available, the
RBM reconstruction protocol can also be easily adapted to reconstruct non-positive and complex
wavefunctions [11], although noise-layer regularization cannot be directly applied.

Developing more powerful denoising methods for quantum systems would be quite valuable to
experimentalists. It is interesting to note that the noise regularization used in this work does not
require passing gradients through binary units, instead obtaining all learning signals through suitably
conditioned Gibbs sampling. It may be worth developing more sophisticated models which can
support a binary prior relevant to quantum experiments.
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