
PaccMannRL: Designing anticancer drugs from
transcriptomic data via reinforcement learning

Jannis Born* Matteo Manica* Ali Oskooei* Joris Cadow María Rodríguez Martínez
{jab,tte,osk,dow,mrm}@zurich.ibm.com

IBM Research, 4 Säumerstrasse, Rüschlikon, Switzerland 8803
* Equal contributions

Abstract

With the advent of deep generative models in computational chemistry, in silico
anticancer drug design has undergone an unprecedented transformation. While
state-of-the-art deep learning approaches have shown potential in generating com-
pounds with desired chemical properties, they disregard the genetic profile and
properties of the target disease. Here, we introduce the first generative model capa-
ble of tailoring anticancer compounds for a specific biomolecular profile. Using
a RL framework, the transcriptomic profiles of cancer cells are used as a context
for the generation of candidate molecules which is optimized through PaccMann
(a previously developed drug sensitivity prediction model) to obtain effective anti-
cancer compounds for the given context (i.e., transcriptomic profile). We verify
our approach by investigating candidate drugs generated against specific cancer
types and find the highest structural similarity to existing compounds with known
efficacy against these cancer types. We envision our approach to transform in silico
anticancer drug design by increasing success rates in lead compound discovery by
leveraging the biomolecular characteristics of the disease.

1 Introduction
The last two decades have seen a decline in the productivity of the drug discovery pipeline while
the investment into drug discovery has risen significantly [1]. Indeed, only a minimal portion of
drug candidates obtain market approval (less than 0.01%), with an estimated 10-15 years until
market release and costs that range between one [1] to three billion dollars per drug [2]. This low
efficiency has been attributed to the high dropout rate of candidate molecules in the early stages of
the pipeline, highlighting the need for more accurate in silico and in vitro models that produce more
successful candidate drugs. Most recently, deep learning methods have gained popularity within the
computational chemistry community [3] and a number of works have demonstrated the feasibility
of in silico design of novel candidate compounds with desired chemical properties [4–6]. While
very effective in generating compounds with desired chemical properties, these methods do not
integrate information about the cellular environment in which the drug is intended to act. However,
the two main causes of the increasing attrition rate in drug design are lacking efficacy against the
specific disease of interest and off-target cytotoxicity [7], calling to bridge systems biology closer
with drug discovery. In addition to the initial wet-lab validations, the discovery pipeline involves a
sequential process that builds upon high-throughput screenings, ADMET-assessments (absorption,
distribution, metabolism, excretion and toxicity, i.e., criteria for the pharmacological activity of a
compound) and a lengthy phase of clinical trials. The costs of the experimental and clinical phase can
be prohibitive and any solution that helps to reduce the number of required experimental assays can
provide a competitive advantage and reduce time to market. To this end, we present a deep RL based
model for anticancer molecule generation that builds on top of the previous approaches and, for the
first time, enables generation of novel anticancer compounds while taking into account the disease
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context encoded in the form of gene expression profile (GEP) of the disease e.g., tumor. The training
procedure for the generator and the critic models consists of two stages. In the first stage, each model
is trained independently. In the second stage, the generative model is retrained and optimized via a
RL approach with a reward coming from the critic module. The goal of the optimization is to tune
the generative model such that it generates (novel) compounds that have maximal efficacy against a
given biomolecular profile; be it the characteristic for a cancer site, a patient subgroup or even an
individual. By efficacy, we refer to cellular IC50 (i.e. the micromolar concentration necessary to
inhibit 50% of the cells in a sample) as opposed to e.g. enzymatic IC50. It is important to note that
this efficacy is a joint property of a drug-cell-pair and empirically it is well-known that the efficacy of
a compound heavily varies for different types of cells. In this work, we emphasize profile-specific
compound generation and optimize the generator using IC50 as the sole critic.
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Figure 1: The proposed framework for anticancer compound design against specific cancer profiles. A
biomolecular profile VAE (PVAE, top row of (A)) and a sequential compound generator VAE (SVAE, bottom row
of (A)) are combined to obtain a conditional molecule generator. Each of the PVAE, SVAE and the predictive
critic are pretrained independently. Thereafter, the conditional generation process starts with a biomolecular
profile of interest e.g., transcriptomic profile from an individual patient. The given profile is encoded into
the latent space of gene expression profiles and is then decoded through the molecular decoder to produce a
candidate compound. The generative process can be “primed” through encoding a known, effective compound
or a functional group with the molecular encoder. The proposed compound is then evaluated through the critic, a
multimodal drug sensitivity prediction model that ingests the compound and the target profile of interest (B). The
RL based optimization is conducted by maximizing the reward given by the critic. Over the course of training,
the generator will thus learn to produce candidate compounds with higher and higher efficacy. The RL training
evolution including the state (st), the reward (Rt) and the candidate compound (Ct) during a complete training
cycle are shown in (C).

2 Methods

Figure 1 shows the two main components of our proposed end-to-end architecture: the conditional
generator (Figure 1A) and the critic (Figure 1B).
Conditional generator (G). This is a molecule generator that produces a candidate drug structure
using its SMILES string representation [8]. In our use case, the generative process needs to be
conditioned on a target biomolecular profile, e.g., from a patient or a disease. Inspired by [5], we
concluded that VAEs are the ideal model for our task since by design they bring about a structurally
ordered latent space that simplifies the combination of different information sources (in our case
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transcriptomic profiles and chemicals). Our conditional generator combines two VAEs that are
trained independently prior to being fused together: 1) a denoising VAE (with for cancer profile
encoding/generation (PVAE) and 2) a sequential VAE (SVAE) for SMILES sequence generation. The
detailed derivation and equations for the VAE can be found in [9, 10]. PVAE and SVAE are initially
pretrained in isolation. PVAE is trained on gene expression profiles (GEP) to learn a consistent latent
representation for biomolecular signatures. SVAE is trained on bioactive drug-like molecules to learn
the syntax of valid SMILES and general molecular semantics. The fact that models that process
SMILES sequences must have the ability to count the ring opening and closing symbols in a molecule
necessitates the use of stack memory [11], in our case stack-augmented GRUs as proposed by [12].
Thereafter, the encoder of the PVAE is fused with the decoder of the SVAE via their latent space. The
combination of the two models enables to learn a latent space that links biomolecular profiles and
chemical structures providing an effective way to sample novel compounds given a specific GEP. In
the final training phase, the weights of the fused model are fine-tuned using a reward from the critic
in a RL framework.

Critic (C). The critic is a multimodal drug sensitivity prediction model which evaluates the efficacy
of any given candidate compound against a biomolecular profile of interest (e.g., gene expression of a
cancer cell line). It outputs a non-negative reward, a function of the predicted IC50 of the candidate
compound for the target profile, which is used in a RL framework to update the conditional generator.
Following the most recent advances for multimodal drug sensitivity prediction we herein utilize
PaccMann as a critic; specifically multiscale convolutional encoders as proposed in [13].

The RL framework. The conditional generator is retrained in combination with the critic in a
RL-based optimization process to tailor molecules towards the given GEP. First, the GEP is encoded
into its latent space, Zc. This embedding is then added to the latent encoding of a primer compound
or substructure (Zp). The advantage of using a primer is that it enables injection of prior knowledge
into the model by starting the generative process from an existing and proven effective compound or
functional group – instead of designing a compound from scratch. Formally, the molecule generation
is conditioned on a contextZ , where in this workZ = {Zc, Zp}. Since Zc and Zp reflect embeddings
learned from semantically different data sources (gene expression and molecules) it is non-trivial to
combine them meaningfully. We use a summation because it is a permutation invariant operation
and has been proposed in the deep sets architecture [14] to combine a variable set of unstructured
latent encodings. Our additive latent representation is similar in concept to the conditional VAE with
additive Gaussian encoding space [15]. Intuitively, this fusion most likely warps the latent space from
encoding structural similarity (of molecules or GEP) into functional similarity [5] so as to aggregate
molecules with similar predicted efficacy for a given cell line. Note that using a primer compound or
substructure is optional and if no priming compound is used, simply the latent space representation
of the <START> token is added to the latent encoding of the target GEP.
Next, the conditional generator decodes the latent encoding, Zc + Zp, and generates a molecular
structure that, in combination with the GEP, is fed to the critic to produce a certain reward for the
generated compound, as illustrated in Figure 1A and B. Following the notation of [4], the conditional
generator, G, acts as the agent and the multimodal IC50 prediction model, C, represents the critic.
We aim to optimize Θ, the parameters of G, to produce candidate compounds, CT , that target a
specific GEP, Xc. In contrast to [4], we define the set of states S as all possible SMILES strings
(with length ≤ T ) paired with the target GEP. As depicted in Figure 1C, molecules are generated
by G by sampling an action at at each step(0 < t < T ) from p(at|st−1), where st−1 = (Ct−1, Xc).
Terminal states S∗ ⊂ S are reached when either t = T or when the terminal action aT = <END> has
been sampled. G is trained to learn a policy, Π(Θ), by maximizing: Π(Θ) =

∑
sT∈S∗ pΘ(sT )R(sT ).

The reward RT = R(sT ) = f(C(CT , Xc)) is the output of the critic scaled by a reward function f .
In our experiments, all intermediate rewards R(st) = 0 where t < T , the sum is approximated using
the REINFORCE algorithm [16] and the reward function f for determining the reward from the IC50
prediction, C(CT , Xc), is computed by f(IC50) = exp

(−IC50
5.0

)
.

Data. For the PVAE, we employed a training dataset of 11,592 (normalized) RNA-Seq GEPs from
healthy and cancerous human tissue from the TCGA database and validated it on 1,289 samples from
the same database [17]. The number of genes was reduced to the same 2,128 genes as used in [18, 13],
following the network propagation procedure described in [19]. The SVAE was pretrained on the
SMILES representation of 1,576,904 compounds (10% were held out for performance validation)
from the ChEMBL database [20]. For RL optimization of G, we used GEPs publicly available from
GDSC [21] and CCLE [22] databases. Drug sensitivity data (i.e., IC50) from the GDSC [21] and
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CCLE [22] databases were used to train the IC50 prediction model, the critic (C). We used the
screening data for targeted small molecules to train the IC50 prediction model.

3 Results
Four different models were trained, one for each of the cancer sites: breast, lung, prostate and
neuroblastoma. For the evaluation of the four models, all generated compounds with a predicted
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Figure 2: Sample results for profile-driven model optimization and anticancer compound generation.
Each row illustrates the results of training the RL pipeline on cell lines from a specific site: neuroblastoma,
breast, lung and prostate cancer. The first column compares the distributions of IC50 predictions given by the
critic model for a set of n=500 drug candidates generated with RL optimization and without RL optimization.
The second column presents candidate compounds with a high predicted efficacy (low IC50) against a particular
cell line that was not seen during training. The third column showcases generated compounds that were optimized
to be effective against the average cell-line profiles of the given cancer type in each row. In the fourth column,
we present an existing anticancer compound (approved against at least one type of cancer), that was in the
top-3 neighborhood of the generated compound in the third column. The existing and generated compounds
are compared in terms of Tanimoto structural similarity as well as three chemical scores crucial in drug design
namely, druglikeness (QED, 0 worst, 1 best), synthesizability (SAS, 1 best, 10 worst) and solubility (ESOL,
given in M/L).

IC50 value below 1µM were considered as effective. Moreover, within each cancer site 80% of
the cell lines were considered as training cell lines and used to optimize the parameters Θ of the
conditional generator whereas the remaining 20% were set aside for testing. Our model learned to
produce compounds with lower IC50 values, for unseen cell lines from the given cancer site. The
first column of Figure 2 shows that the IC50 distribution of candidate compounds proposed by the
generative model were successfully shifted towards higher efficacy. The baseline model corresponds
to the pretrained SVAE from which n = 500 molecules were randomly sampled. In all four cases,
a significant portion (between 17% and 30%) of generated molecules were assigned a IC50 value
below 1µM, whereas only 1-4% of the candidates generated by the baseline model (i.e., the SVAE, a
generative model of drug-like molecules trained with data from ChEMBL that was not yet optimized
via RL retraining) were classified as effective. The second column of Figure 2 shows generated
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molecules that are predicted as being effective against an unseen cell line from the respective cancer
site. In the third column of Figure 2, we showcase novel molecules that were designed specifically
for each cancer site, as opposed to a specific cancer cell profile. All compounds exhibited high
predicted efficacy against the average cellular profile of the target site while maintaining efficacy
against the majority of individual cell lines for that site. In the last column of Figure 2, we compare
the four site-specific candidate compounds with one of their top-3 neighbors (Tanimoto similarity,
τ ) from several hundreds of existing anticancer compounds. The third closest neighbor of the
generated compound against neuroblastoma (Figure 2 first row, third column) is Fulvestrant, an
antagonist/modulator of ERα which has recently been proposed as a novel anticancer agent for
neuroblastoma [23]. The candidate compound proposed against breast cancer (Figure 2 second row,
third column), has Doxorubicin as one of the top-3 nearest neighbors. Doxorubicin is a commonly
used chemotherapeutical against breast cancer [24]. The generated compound against lung cancer
(Figure 2, third row, third column) results close to Embelin, an existing anticancer compound from
the GDSC database. Embelin is known to be a promising anticancer compound as it is the only
known non-peptide inhibitor of the XIAP protein [25], a protein that plays an important role in lung
cancer development [26]. Lastly, the closest neighbor of the prostate-specific generated compound
(Figure 2 fourth row, third column) is Vorapaxar. Its efficacy is highest against a prostate cancer cell
line (DU_145) according to GDSC/CCLE. Vorapaxar is an antagonist of a protease-activated receptor
(PAR-1) that is known to be overexpressed in various types of cancer, including prostate [27].

4 Discussion
We herein presented the first deep-learning based anti-cancer compound generator that enables us
to condition the molecular generation on the biomolecular profile (transcriptomic profile in this
work) of the target cell, tumor or cancer site. We demonstrated, using a RL optimization framework,
that our proposed generative model could be optimized to produce candidate compounds with high
predicted efficacy (IC50) against a given target profile. We showcased in a post-hoc analysis that
each of the four site-specific generated compounds had structural similarities to known anticancer
compounds commonly used to treat cancer of the same type as the generated compound was optimized
for. Oftentimes however, medical chemists do not start the drug design from scratch, but from an
approved drug and with the goal to find a drug with similar effects (e.g. increased efficacy or
reduced side effects). Our framework neatly grants the option to incorporate this prior knowledge
into the design process already. Another endeavour is to develop a drug that specifically targets a
protein (e.g. one that has been implicated in tumor proliferation or treatment response according to
a gene-knockout study). Whilst [28] very recently presented a model that proposed potent DDR1
kinase inhibitors, we are working towards a generic framework where the molecule generation can be
conditioned on possibly multimodal context information such as a target protein, a primed drug, a
tumor profile and notably also a combination thereof by utilising permutation invariant operations
in the multimodal latent space [14]. We have, however, not yet fully explored the full potential
of the framework, e.g. by conditioning the design on a known drug in conjunction with a cell
profile. While we believe our results to be a promising stepping stone for profile-specific anticancer
compound generation, we are aware further optimization must be done before it can be used a reliable
tool for drug discovery. For instance, there are various other properties of a candidate drug other
than its efficacy that determine its potential for becoming a successful anticancer compound. Our
RL optimization framework can easily be extended with further critics that reward or punish the
conditional generator for other critical properties, in addition to efficacy against a given cancer profile.
In the future, we aim to amend the reward function to compute rewards not only for efficacy but also
based on predicted cytoxicity, solubility, drug-likeness and synthesizability.

5 Availability of software and materials
The omics data used to pretrain the PVAE, the molecular data for the SVAE and the cell profiles used
in the RL regime as well as the pretrained models can be found on https://ibm.box.com/v/paccmann-
pytoda-data. To assess the critic, please see [13]. All code to reproduce the experiments is publicly
available on https://github.com/PaccMann/.
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