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Abstract

It is very difficult for both theories and computational methods to predict the super-
conducting transition temperatures (Tc) of superconductors for strongly correlated
systems, in which high-temperature superconductivity emerges. Exploration of new
superconductors still relies on the experience and intuition of experts, and is largely
a process of experimental trial and error. In one study, only 3% of the candidate
materials showed superconductivity [1]. Here we report an interdisciplinary at-
tempt for finding new superconductors based on deep learning. We represented the
periodic table in a way that allows a deep learning model to learn it. Although we
used only the chemical composition of materials as information, we obtained an R2

value of 0.92 for predicting Tc for materials in a database of superconductors. We
obtained three remarkable results. The deep learning method can predict supercon-
ductivity for a material with a precision of 62%, which shows the usefulness of the
model; it found the recently discovered superconductor CaBi2, which is not in the
superconductor database; and it found Fe-based high-temperature superconductors
(discovered in 2008) from the training data before 2008. These results open the
way for the discovery of new high-temperature superconductor families.

1 Introduction

Extensive research has been conducted on superconductors with a high superconducting transition
temperature, Tc, because of their many promising applications, such as low-loss power cables, power-
ful electromagnets, and fast digital circuits. However, finding new superconductors is very difficult.
In one study, it was reported [1] that only 3% of candidate materials showed superconductivity.
Theoretical approaches have been proposed for predicting new superconductors. According to
Bardeen-Cooper-Schrieffer (BCS) theory [2], which explains phonon-mediated superconductivity in
many materials, high Tc is expected for compounds made of light elements. Tc values of over 200 K
have been reported for sulfur hydride [3] and lanthanum hydride [4]. However, very high pressures
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(over 150 GPa) are required. Superconductivity with rather high Tc has been observed for cuprates [5]
and iron-based materials [6] at ambient pressure, where unconventional superconductivity beyond
the BCS framework is realized. However, the strong electron correlations in these materials make it
very difficult to conduct first-principles calculations [7–10] to calculate their electronic structures
and predict Tc values. Therefore, new approaches for finding superconductors are needed. Materials
informatics, which applies the principles of informatics to materials science, has attracted much
interest [12, 11]. Among machine learning methods, deep learning has achieved great progress. To
predict the material properties of materials using the conventional methods in materials informatics,
researchers must design the input features of the materials; this is called feature engineering. It is
very difficult for a human to design the appropriate features. A deep learning method can design
and optimize features, giving it higher representation capabilities and potential compared to those of
conventional methods.

2 Results and Methods

Reading Periodic Table Here, we report a deep learning model for the exploration of new su-
perconductors. Using deep learning to discover new superconductor families from known ones is
analogous to using one to recognize dogs from training data containing only cats. This form of
learning, called zero-shot learning, is very difficult. However, the properties of elements, which
can be learned by deep learning, can be applied to materials. Our strategy is to suitably represent
these properties, use this representation as training data, and have the deep learning model learn
these properties. We made the deep learning model learn how to read the periodic table as human
experts do. Although humans cannot recall tens of thousands of data points, computers can. For
this purpose, we represented the periodic table in a way that allows a deep learning model to learn
it.This method, named reading periodic table, is our first contribution to deep learning. We considered
inorganic crystal superconductors because the number of known organic superconductors is small.
We used only the composition of materials because the applied superconductor database does not
have sufficient spatial information.

Figure 1: Proposed method named reading period table. The representation of a material by the
method. The composition ratios of the material [13] are entered into the two-dimensional periodic
table. We then divide the original table into four tables corresponding to s-, p-, d-, and f-blocks,
which show the orbital characteristics of the valence electrons, to allow the deep learning model to
learn the valence orbital blocks. The dimensions of the representation are 4× 32× 7. The neural
network learns the rules from the periodic table by convolutional layers.

We used the deep learning model to predict the critical temperatures, Tc, of superconductors in the
SuperCon dataset [14], which has the Tc values of about 13,000 superconductors. We refer to the
model trained with only SuperCon as the preliminary model. The train-test split was 0.05. The R2

value is 0.92, which is higher than that previously reported (0.88) for a random forest regression
model [15], where materials were restricted to those with Tc > 10 K (half of all materials). In
contrast, our preliminary model does not have any restrictions regarding Tc. The random forest
regression model requires many appropriate input features of the materials (e.g., atomic mass, band
gap, atomic configuration, melting temperature) to be manually designed. Here, even without such
feature engineering, we achieved much better results.

The problem in using data of superconductors only and the method named garbage-in to over-
come it We used the preliminary model trained with SuperCon to predict the Tc values of 48,000
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inorganic materials in the Crystallography Open Database (COD) to find new superconductors for
experiments. However, for about 17,000 of the materials, the predicted Tc was > 10 K, which is
unreasonable. The failure to find new superconductors by this preliminary model seems to originate
from the fact that the training data (SuperCon) included only 60 non-superconductors; the preliminary
model was thus unable to learn non-superconductors. Data on non-superconductors are needed to dif-
ferentiate superconductors from non-superconductors. However, no such dataset is available. Hence,
we created synthetic data on non-superconductors, supposing that the Tc values of the inorganic
materials in COD that are not in SuperCon are 0 K under the assumption that most of these materials
do not become superconductors with finite Tc. We used the synthetic data and SuperCon as the
training data. We refer to this data generation method as garbage-in, which is our second contribution
to deep learning. As demonstrated by the above results for the preliminary model, scores of tests
using only superconductor data, SuperCon, are not good for evaluating models. Usually, density
functional theory is applied for evaluation in materials informatics; however, density functional theory
cannot be used to evaluate models, because it is very difficult to calculate Tc for strongly correlated
systems. A database of non-superconductors is thus necessary.

The prediction of superconductivity We applied a list of materials reported by Ref. [1] to evaluate
the models. The list has about 400 materials found since 2010; importantly, it includes 330 non-
superconductors. To temporally separate the materials on the list from the training data, we used only
the data added to SuperCon or COD before 2010 as training data. To compare the capability of a
model with expert predictions, we evaluated whether the model could predict superconductivity for
the given materials. Randomly selecting a material from the list with Tc > 0 K yields a precision
of 32%. This is considered the baseline because all the materials on the list were expected to be
superconductors before the experiments. The model predicted Tc, and whether the Tc value will
be higher than 0 K resulted in a precision of 62%, an accuracy of 76%, a recall of 67%, and a f1
score of 63%. The precision is about two times higher than the baseline (32%) and 10 sigma away
from it. The AUC was 0.78. Another interesting threshold is 10 K because only a limited number
of superconductors have a Tc of > 10 K. The deep learning method predicted materials with this Tc
with a precision of 75%, which is about seven times higher than the baseline random precision (10%).
The accuracy, recall, and f1 score were 95%, 76%, and 75%, respectively. The AUC was 0.94. In
contrast, the preliminary model, trained with SuperCon only, predicted that all the materials would
be superconductors, even though the training data were up to the year 2018 (i.e., not temporally
separated). We also performed random forest binary classification with garbage-in and deep learning
binary classification, which classify whether the Tc is beyond 0 K and 10 K. The AUC were 0.78
and 0.96 respectively. The results, summarized in Table 1, demonstrate that our deep learning model
has good capability to predict superconductivity and outperformed random forest. When it comes to
materials search, recall is very important. Recall and f1 score were much better in our deep learning
method than random forest.

Precision Recall f1 score
Baseline (0 K) 0.32 – –

Our DL model Reg (0 K) 0.62 0.67 0.63
Our DL model Cls (0 K) 0.72 0.50 0.59
Random Forest Cls (0 K) 0.71 0.27 0.39

Baseline (10 K) 0.10 – –
Our DL model Reg (10 K) 0.75 0.76 0.75
Our DL model Cls (10 K) 0.76 0.77 0.77
Random Forest Cls (10 K) 0.88 0.26 0.40

Table 1: Scores for predictions of superconductivity for materials reported by Ref. [1]. Reg and Cls
are abbreviations for regression and classification respectively.

The discovery of superconductor CaBi2 Next, we used the model to predict the Tc values of the
materials in COD. The number of materials predicted to be superconductors was different every time
we trained the models from scratch, which is expected with deep learning. We made a search target
list for the experiment. After we removed cuprates and Fe-based superconductors (FeSCs) from
the list, we obtained 900 materials predicted to be superconductors with Tc > 0 K, 250 materials
with Tc > 4 K, and 70 materials with Tc > 10 K, which is more reasonable compared to the results
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obtained using the preliminary model. These materials are candidates for new superconductors.
Although the prediction results on materials reported by Hosono et al. show that the model is useful,
experiments (currently under way) are required to validate the method. The list included CaBi2,
which was recently found to be a superconductor [16] and is not listed in SuperCon. We had not
known it was a superconductor beforehand. It can be concluded that the deep learning model found
an actual superconductor.

The discovery of Fe-based superconductors (FeSC) To test the capability of our deep learning
model of finding new types of superconductor, we investigated whether we could find high-Tc FeSCs
by using the model trained with data before 2008, the year FeSCs were discovered. We removed
two materials, LaFePO and LaFePFO, from the training data because their discovery in 2006 led to
the discovery of high-Tc FeSCs. We used the 1,399 FeSCs known as of 2018 in SuperCon as the
test data. A total of about 130 training and test runs were used. Although the models were made
stochastically, we found some FeSCs that were predicted to have finite Tc. A histogram of the number
of predicted FeSCs with Tc > 0 K is shown in Fig. 2. We obtained the same results for high-Tc
cuprates. (see Supplementary Information). When we used shallow 10-layer networks that had as
good R2, precision, etc., as the current large model, FeSCs were not found. This is not strange,
because most iron compounds show magnetism, which is incompatible with superconductivity,
and there are few superconductors including iron except for FeSCs. Indeed, few researchers had
anticipated that FeSCs could have high Tc values. It is recognized that larger models have better
generalization performances. The fact that the larger model found FeSCs can be explained by a larger
model having an improved search capability for new superconductors. These results suggest that
FeSCs and cuprate superconductors might have been found by our deep learning model.

Figure 2: Histogram of the number of predicted FeSCs with Tc > 0 K (log scale).

3 Concluding discussion and the summary of contribution

If we had searched for FeSCs following the prediction, we would have discovered FeSCs. However,
the predicted Tc of the FeSCs was rather low in our attempt to discover FeSCs. FeSCs might thus
have been a low-priority target depending on how the model prediction was used. This problem will
be considered in future research. We will incorporate crystal structure information to enhance the
capability of the model of finding new high-Tc superconductor families. Nevertheless, the present
model is still useful as an auxiliary tool. Furthermore, the present method could be applied to other
problems where crystal structure is difficult to obtain. Even though our method does not require
feature engineering, unlike conventional methods in materials informatics, it achieved much better
results. Our deep learning method may replace existing methods, just as other deep learning methods
have done in computer vision, natural language processing, and reinforcement learning. Deep
learning requires failure data (e.g., non-superconductors) for accurate prediction. As many datasets
in materials search are random train-test split, we must prepare temporal separate train-test dataset
for the progress in the field. Because our method does not use specific properties of superconductors
and uses only chemical formulas, the method can be applied to other problems with, in particular,
inorganic materials. We are almost ready for the paper on the application to other problems. We
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demonstrated the usefulness of our method and deep learning. Our results open the way to the
discovery of new high-Tc superconductor families.

The contribution in methods: (1) The learning representation method named Reading Periodic
Table that makes deep learning learn to read periodic table and learn the laws of elements in order
to find novel type of materials unseen in the data set; (2) The method, named Garbage-in, that
synthesizes necessary failure data; (3) The model evaluation method to use the list of materials
reported by Ref. [1] as the test and use the training data reported before the list was begun to be made;
(4) The first deep learning model for superconductors.

The results: (1) The prediction of superconductivity with much higher precision than human
experts, high recall, and high f1 scores; (2) The discovery of superconductor CaBi2, which was not in
the superconductor dataset; (3) The discovery of Fe-based superconductors by the training data only
before the actual reported year.

arXiv paper: The paper is found from the link.
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A Scatter plot of predicted and true (SuperCon) Tc

The scatter plot of the prediction only using the data of superconductors (SuperCon) is illustrated in
Fig. 3. It is not the averaged predicted Tc, but one instance.

Figure 3: Scatter plot of predicted and true (SuperCon) Tc values.

B methods

B.1 The method named reading periodic table: representation of periodic table

B.1.1 Representation of elements as one-hot vectors

Any one of the 118 elements of the periodic table can be represented by a one-hot vector. For
example, He can be represented by a 118-dimensional vector (0, 1, 0, · · · , 0) and H can be repre-
sented by (1, 0, · · · , 0). The fictional compound H2He3 would be represented by (2, 3, 0, · · · , 0)
or (2/5, 3/5, 0, · · · , 0). There are two problems associated with representing materials by one-hot
vectors. First, neural networks do not learn about elements and their combinations that do not appear
in the training data. Second, one-hot vector representations do not reflect the properties of the
elements, especially when data are scarce. Elements are treated as quite different entities in one-hot
representations, even though the properties of the elements are known from quantum mechanics.

B.1.2 Learning of periodic table

To overcome these problems, we introduce a method that enables the deep learning model to learn the
periodic table. The information on elements is reflected by the data representation, which the deep
learning model uses to learn the properties. The properties of the elements and their similarities are
reflected in the periodic table.The composition ratios of materials are entered into the periodic table
and we then divide the periodic table into four tables corresponding to the s-, p-, d-, and f-blocks
because differences in the valence orbitals are important. The dimensions of the representation are
4× 32× 7. The deep learning model learns the periodic table using its convolutional layers. With
knowledge of the periodic table and element properties, the deep learning model can predict unknown
materials from known ones.

B.2 Garbage-in: a method for creating synthetic data on non-superconductors

We have a database of superconductors. However, to explore new superconductors we also need a
database of non-superconductors, which does not exist. Hence, we created synthetic data. Under the
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assumption that most of the inorganic materials in COD do not become superconductors with finite
Tc, we input the inorganic materials in COD, with Tc = 0, to the deep learning model as training data
along with SuperCon. The method is illustrated in Fig. 4. The overall scheme of training is illustrated
in fig. 5.

SuperCon (12,700)
• Superconductors
• Tc

COD (48,000)
• Inorganic Materials

Training Data (60,000) 
SuperCon
• Superconductors
• Tc
COD
• Inorganic Materials
• Tc=0

Figure 4: Synthetic data generation method named garbage-in.

Superconductors

Synthesized data of 
non-superconductors 

Reading Periodic Table

S
p
d
f

Deep
Neural 
Network

Tc

Figure 5: Overall scheme. The data of superconductors from SuperCon and the data of non-
superconductors synthesized by garbage-in are transformed into the representation by reading periodic
table in order for neural networks to learn the rules, then the deep neural network is trained to output
Tc

B.3 List of candidate materials

We used the 48,000 inorganic materials in COD, 1,000 of which were used as test data. The remaining
47,000 materials and 12,000 materials in SuperCon were used as training data. Then, we obtained
predicted Tc values of the 1,000 materials in the test data. We repeated the procedure 48 times with
different test data. This produced a candidate materials list. If we generate materials by generative
models, which output chemical composition virtually, we do not yet know how to synthesize the
generated materials. COD is thus used because it is a list of previously synthesized materials.

B.4 Data availability

SuperCon [14], COD [17–19], and the materials reported by Ref. [1] are openly available and free to
use. The materials reported by Hosono et al. have undetermined variables, such as x in H2 – xO1+x. We
investigated related papers and input the values for such variables. We then made a list of materials
for the evaluation of models. This list will be openly available for the community.

B.5 Code availability

We are planning to open the code after some experiments on the candidate materials are completed.
The code will be available on reasonable request.
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B.6 Data handling

B.6.1 Definitions of conventional, cuprate, and Fe-based superconductors

Cuprate superconductors are defined as materials that contain Cu, O, and more than one other element.
The exceptions are Cu, La, and O. FeSCs are defined as materials that contain Fe and either As, S,
Se, or P. All other superconductors are considered to be conventional.

B.6.2 Removal of problematic data

We removed materials whose composition ends with variables such as “+x”. About 7,000 materials
were removed from SuperCon. If we know the accurate compositions of these materials and include
them in the data, this should improve the deep learning model. We input appropriate values for
variables such as “x” for the materials reported by Hosono et al. after reviewing the original studies,
because there were only about 300 materials left after temporal separation.

B.6.3 Treatment of materials with same composition but different Tc values in SuperCon

SuperCon contains materials with the same composition but different Tc values. We decided to use
the median value of Tc.

B.6.4 Treatment of materials without Tc values in SuperCon

Of the 17,000 remaining materials, about 4,000 did not have Tc values. We considered setting Tc = 0
for these materials or just excluding them. A comparison of the regression results of the preliminary
models with SuperCon indicated that excluding the materials without Tc values was better, so this
was done.

B.6.5 Treatment of COD data

We use only the inorganic materials in COD. We remove duplicates, data with compositions difficult
for machines to read, and overlap with SuperCon and the materials reported by Hosono et al. After
this process, about 48,000 materials remained.

B.6.6 Overlap among SuperCon, COD, and materials reported by Hosono et al.

The overlap with SuperCon was removed from COD and the materials reported by Hosono et al.

B.6.7 Temporal separation of materials

Since the materials reported by Hosono et al. were collected starting from 2010, we used data from
before 2010 as the training data. Using data from before 2008 as the training data and using the
materials reported by Hosono et al. to check the reliability of the models also resulted in temporal
separation.

B.7 Neural networks

A smooth L1 loss function was used. The optimizer was Adam [20]. For the prediction of Tc values
for the materials in SuperCon by the preliminary model, the learning rate was 2× 10−6, the batch
size was 32, the number of epochs was 6,000, Tc was in the linear scale, and the number of layers
was 64. It took about 50 hours for training (see Supplementary Information). For the prediction of Tc
values for the materials in SuperCon by the model with garbage-in, the number of epochs was set
to 1,000. It took about 45 hours for training because the training dataset was five times larger than
the preliminary model. For the prediction of superconductivity for the materials reported by Hosono
et al., the learning rate was 10−4, the batch size was 32, the number of epochs was 200, Tc was in
the linear scale, and the number of layers was 64. For the prediction of FeSCs, the learning rate
was 10−4, the batch size was 32, the number of epochs was 200, Tc was in the linear scale, and the
number of layers was 64. For making the candidate material list for the experiment and the discovery
of CaBi2 from the list, the learning rate was 10−4, the batch size was 32, the number of epochs was
500, Tc was in the log scale after the addition of 0.1 to Tc, and the number of layers was 9. The
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network was different because these predictions were done at the start of our research. We also found
the superconductor CaBi2 using the 64-layer network.

B.8 Random Forest

Random forest analysis were performed by using weighted average, weighted variance, maximum,
minimum, range, mode, median, and mean absolute difference of the 32 features of elements in
compositions. (See supplementary information.) The features were obtained from Magpie [21].
The results were the averages over 10 models. Random forest analysis using only the data of
superconductors, without garbage-in, met the same problem as our deep learning model. It predicted
about 60% of the materials were to be superconductors. We performed the classification if the Tc is
beyond 0 K or not for materials reported by Hosono et al, because it is almost impossible for random
forest regression to estimate Tc = 0, because random forest is an ensemble estimation. If even one
tree estimates Tc > 0, then random forest regression estimates Tc > 0. The classification between 10
K was also done.

B.9 Training and test data used for main results

Main result Training data Test data
Prediction of superconductors from

materials reported by Ref. [1]
SuperCon and COD

before 2010 Materials reported by Hosono et al.

Superconductor CaBi2 found
in candidate material list SuperCon and COD in 2018 COD in 2018

FeSCs found from training
data before discovery year

SuperCon and COD
before 2008 FeSCs in SuperCon in 2018

Table 2: Summary of main results.

The training data and test data used for the main results are summarized in Table 2.
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C Supplementary information

C.1 Other hyper parameters

We obtained an R2 value of 0.93 for the prediction of Tc for the materials in SuperCon by the best
preliminary model with the same train-test split (0.15) as that used in a previous study [15], because
in the previous study, only the R2 value of the best model (to our understanding), 0.88, was reported,
which is less than our R2 value of 0.93. For a train-test split of 0.05, the median of R2 was 0.92 for
56 models, which is presented in the main text. For the prediction of Tc values for the materials in
SuperCon by the model with garbage-in and a train-test split of 0.05, the median of R2 was 0.85 for
55 models. For the prediction of superconductivity for the materials reported by Ref. [1], the reported
scores are the median values for 29 models.

C.2 Prediction of superconductivity in FeSCs by deep learning model

The number of predicted FeSCs varied with the model because models trained with the same training
data can become different depending on their initial weights and the input order of the training data.
The models were stochastically constructed. However, once a model is constructed, the output is
deterministic unless stochastic layers are used. Of note, we always found some high-Tc FeSCs that
were predicted to have a finite Tc.

C.2.1 Check of models based on materials reported by Hosono et al.

A model that predicts superconductivity for all materials or makes random predictions will have a
precision that is equal to the baseline random precision. The validity of the models was checked
using the materials reported by Hosono et al., which can be used to reject the model. We used the
models to predict whether the materials on the list had a superconducting transition temperature of
above 0 K, and checked whether the precision was higher than the baseline random precision. The
mean precision was 0.5 for about 130 training and test runs and the baseline random precision was
0.32. The precision was about two times higher than the baseline. We also checked whether each
model satisfied the condition that the precision be sufficiently higher than the baseline.

C.2.2 Predictions using various combinations of training data

To confirm the reliability of a model, we checked whether the model learned the feature of supercon-
ductivity by checking the effect of training data on the number of predicted FeSCs. We compared the
predictions of five models trained using different data based on SuperCon and COD. The training
data were as follows: (i) data before 2008 without LaFePFO and LaFePO; (ii) data before 2008 with
LaFePFO and LaFePO; (iii) only conventional superconductors as of 2018; (iv) only cuprates as of
2018; and (v) both conventional superconductors and cuprates as of 2018. These models predicted
the Tc values of the FeSCs in SuperCon. In total, about 130 training and test runs were used for (i)
and (ii) and about 170 training and test runs were used for (iii), (iv), and (v).

Figure 6 shows the results for (i) and (ii). As shown, the number of predicted FeSCs in Fig. 6b is
higher than that in Fig. 6a. The average number of FeSCs predicted to have finite Tc increased from
80 to 129. The median increased from 44 to 130. We checked the validity of the models using the
materials reported by Hosono et al. When evaluating model (i), we removed materials containing
Fe from the list. This was not done when evaluating model (ii). The baseline random precision and
model precision were 0.32 and 0.5, respectively, for model (i), and 0.32 and 0.5, respectively, for
model (ii). The model precision was sufficiently higher than the baseline, indicating that the models
were valid.

These results show that these two materials had a large impact on the predictions. It is surprising, in
view of deep learning, that 2 out of 60,000 training data points had such a significant influence on
the model. However, this influence is reasonable because human experts can infer many FeSCs if
they know that LaFePFO and LaFePO are superconductors. The results for (iii) and (v) are shown in
Fig. 7. Model (iv) (trained with only cuprates) could not predict any FeSCs. As shown in the results
of (iii) and (v), the average number of the FeSCs predicted to have finite Tc increased from 46 to 123
when cuprates were included in the training data. The median increased from 15 to 80. The model
learned the feature of cuprates, and the number of predicted FeSCs was increased by the addition
of cuprates. We checked the models using the materials reported by Hosono et al. We removed
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(a) Without LaFePFO and LaFePO.
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(b) With LaFePFO and LaFePO.

Figure 6: Comparison of histograms of predicted FeSCs by model trained with data before 2008 with
and without LaFePFO and LaFePO (log scale).

materials containing Fe from the materials on the list. The baseline random precision was 0.2. The
mean precision values were 0.41 and 0.35, respectively, for models (iii) and (v), indicating that the
models were valid since they are three times higher than the baseline value.

The above results show that the addition of training data increased the number of FeSCs with
finite Tc. We conclude that the model learned the feature of superconductivity. This confirms the
reliability of the model, which was also confirmed by checking the precision of the prediction of
superconductivities from the materials reported by Hosono et al.
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(a) Trained with conventional superconductors.

100 101 102 103

Number of Predicted FeSCs

0

5

10

15

20

Fr
eq

ue
nc

y

(b) Trained with conventional and cuprate superconduc-
tors.

Figure 7: Histograms of predicted FeSCs (log scale).

C.3 Prediction of superconductivity in cuprates

It was checked whether the deep learning model could predict cuprates when trained with data that did
not include cuprates. We trained models with the following data combinations: (i) only conventional
superconductors; (ii) only FeSCs; and (iii) both conventional superconductors and FeSCs. The data
were as of 2018. We repeated the training and test approximately 130 times. The results for models
(i) and (iii) are shown in Fig. 8. Model (ii) (trained with only FeSCs) could not predict any cuprates
with finite Tc, which is consistent with the prediction of FeSCs from cuprates. The average numbers
of cuprates predicted to have finite Tc were 12 and 17 for models (i) and (iii), respectively. The
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median values were 7 and 9, respectively. In contrast to the prediction of FeSCs, the mean and
median values were almost unchanged by the addition of cuprates to the training data. In SuperCon,
the number of FeSCs is less than a quarter of the number of cuprates, which might have led to the
difference between the predictions of FeSCs and cuprates. The models were checked using the
materials reported by Hosono et al. The baseline random precision was 0.20. The mean precision
values were 0.41 and 0.52 for models (i) and (iii), respectively. The precision values are sufficiently
higher than the baseline random precision. Although care should be taken when interpreting the
results (i.e., deep learning predicted cuprates as candidate superconductors), the results show the
possibility of exploring superconductors using deep learning.
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(a) Trained with conventional superconductors.
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(b) Trained with conventional and Fe-based supercon-
ductors.

Figure 8: Histograms of predicted cuprate superconductors (log scale).

C.4 The Features used in Random Forest

The 32 basic features of elements used for random forest classification are as follows.

AtomicWeight, Column, DipolePolarizability, FirstIonizationEnergy, GS-
bandgap, GSenergy-pa, GSestBCClatcnt, GSestFCClatcnt, GSmagmom,
GSvolume-pa, ICSDVolume, IsAlkali, IsDBlock, IsFBlock, IsMetal, IsMetalloid,
IsNonmetal, MendeleevNumber, NdUnfilled, NdValence, NfUnfilled, NfValence,
NpUnfilled, NpValence, NsUnfilled, NsValence, Number, NUnfilled, NValance,
Polarizability, Row, FirstIonizationEnergies.

We used the weighted average, weighted variance, maximum, minimum, range, mode, median, and
mean absolute difference of the basic features. Thus, in total, we used 256 features.
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