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Abstract

A typical analysis in high-energy physics requires a simulated sample of events
that represents the detector response and can be used to judge small effects in the
real data sample collected. New generations of collider experiments, in particular
the Large Hadron Collider (LHC) upgrade, will require an unprecedented amount

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



of simulated events to be produced to cover the statistics needed. Such large scale
productions are extremely demanding in terms of computing resources. Thus
new approaches to event generation and the simulation of detector responses are
needed. In this paper, we describe a generative approach for obtaining high-
level reconstructed observables while bypassing the simulation of the low-level
detector interactions. We provide an experimental evaluation of our approach
for Cherenkov detectors. Improving the computational efficiency is crucial, as
an accurate simulation of Cherenkov detectors is computationally expensive, it
takes up to 30% of simulation CPU time for LHCb events. This fast simulation is
trained on real data samples collected by the LHCb experiment at the LHC during
run 2. We demonstrate that the approach provides high-fidelity results thus physics
analyses can benefit from the newly simulated samples.

1 Introduction

Simulation of particle collisions occurring at the Large Hadron Collider (LHC) plays a crucial role in
experimental measurements. Often, the amount of the simulated data and the accuracy of description
translate to a systematic uncertainty on the experimental result. The demand for simulated events is
growing rapidly with the increase of luminosity at the LHC. Given the computational requirements of
accurate detector simulation algorithms, they cannot be used to produce all events. Therefore faster
approaches to event generation and simulation are needed and were developed in several experiments
(see for example, (Giammanco| [2014]).

The LHCb detector |Alves et al.| [2008]] is one of the four major experiments at the LHC in CERN.
It is designed primarily to study particles containing c- and b-quarks. This requires robust particle
identification (PID). PID in LHCb is provided by four subsystems: the calorimeter system, the two
Ring-imaging Cherenkov (RICH) detectors and the muon stations. Simulating the RICH detectors
is particularly computationally expensive due to the need to accurately model the optical photon
propagation, as well as low-energy secondary electrons, diffraction, and absorption effects |[Easo et al.
[2005]].

The first attempt to apply Generative Adversarial Networks (GANs) Goodfellow et al.|[2014] to fast
simulation in physics analyses was performed recently in [Paganini et al.|[2018]]. This attempt used
physically-motivated generation of the calorimeter response as a training sample with the aim to
mimic the low-level detector response.

In this paper, we propose a novel solution to the problem of fast simulation for the RICH detectors at
LHCb. It does not rely on physics-based simulation and instead uses a data-driven GAN to directly
generate the high-level reconstructed observables.

2 Generative adversarial networks

The key idea behind GANSs is simultaneous training of two neural networks. One network, named
generator, takes samples from a known distribution (typically a standard normal random vector) and
transforms them. The goal of the generator training is making its output distributed similarly to data.
The other network, discriminator, is given both data and generator’s output as input and is trained to
distinguish between the two. For conditional generation, the typical approach is concatenating the
conditions vector to both the generator and discriminator inputs.

The training of the two networks occurs in turns, and typically the loss of the generator is the
negative from that of the discriminator. In the classical setup |(Goodfellow et al.|[2014], the metric
optimized by the discriminator is cross-entropy, which leads to overall equilibrium achieved when
the Jensen-Shannon (JS) divergence between the data and the generated samples is minimized. The
GAN training using the JS metric suffers from a number of difficulties. Among them are vanishing
gradients for the case of the discriminator significantly outperforming the generator; unstable training
in the case any network outperforms the other; mode collapses when the generator learns to cover
only a part of the data distribution. Despite that, GANs were a ground-breaking success in the field
of data-driven generative models for complex distributions, in particular images.



In order to address the shortcomings of the classical JS GAN, other metrics, such as Wasserstein
distance and Cramer distance, were proposed|Arjovsky et al.|[2017], Gulrajani et al.|[2017]], Bellemare
et al.|[2017]]. They provide a smooth measure even for disjoint distributions, which helps to prevent
mode collapse; they provide non-zero gradients even for a perfectly trained discriminator, allowing
for stable training without the need for excessive regularization and hyper-parameters tuning.

It has been shown that a naive implementation of the Wasserstein GAN results in biased gradients
estimates in training |Bellemare et al.|[2017], [Derkach et al.[[2019]. Since high fidelity is the primary
objective of our model, we used the Cramer metric, which combines the stability advantages of
Wasserstein distance with unbiased gradient estimates.

3 Setup overview

3.1 LHCDb RICH detector

Ring-imaging Cherenkov (RICH) detectors make use of the Cherenkov effect to identify particles.
A particle traversing through a transparent medium with speed greater than the speed of light
in the medium emits Cherenkov photons at an angle, that is a function of the particle’s velocity.
Therefore, measuring this angle and momentum allows to reconstruct the mass of the particle and
thus provide the necessary PID information. In RICH, the Cherenkov light is focused on pixel hybrid
photon detectors |Alves et al.|[2008]], which provide fine spatial resolution and hence allow for the
measurement of the Cherenkov angle.

The data from LHCb RICH pixels is processed using the global likelihood approach [Forty and
Schneider| [1998], by finding the optimal particle type hypotheses for each of the tracks. The PID
information is then aggregated per charged track in the form of differences between log-likelihood
values for a given particle type hypothesis and a pion hypothesis for that track. These differences
are named RichDLL*, ‘*’ standing for k (kaon), p (proton), mu (muon), e (electron) and bt (below
the threshold of emitting Cherenkov light); e. g. RichDLLp stands for the log-likelihood difference
between a proton and a pion hypothesis for a given track.

3.2 Data

We train our model on data from several real decay samples collected in 2016 |Lupton et al.|[2016]].
These are samples of charged tracks of different particle types that have been selected without the
use of information from the PID subsystems response to those tracks. Each particle is a result of a
specific decay channeﬂ

The RichDLL* variables are generated for each track candidate using momentum, pseudorapidity and
the number of reconstructed tracks in the event as inputs to the neural network. The design choice
of generating RichDLL* variables instead of raw RICH pixels is motivated by the performance gain
from bypassing the costly discrete likelihood optimization problem. It also improves learning stability
due to the reduced dimensionality of the target space.

Due to the fact that the samples are coming from the real data, they contain background noise.
The signal RichDLLx* distributions are extracted from such data using the sPlot technique |Pivk and
Le Diberder| [2005]. This method results in having non-unit sample weights such that weighted
RichDLL* distributions are those of the signal component. The weights are applied to the loss
functions during the training process.

3.3 Network architecture

Both generator and discriminator have 10 fully connected hidden layers with 128 units in each, with
rectified linear unit (ReLU) activation functions. The latent space dimensionality for the generator is
64, and the distribution is the standard normal random vector { N (0, 1), ..., N(0,1)} concatenated
with the input parameters, i.e momentum, pseudorapidity and the number of reconstructed tracks in
the event.

'We use muons from J/v) — ptp~, kaons from DT — DO(K~7T)rT and Df — ¢(KTK)n™,
pions from D — D°(K~7)n" and K§ — n"n~, protons from A® — pm ™. For each of the processes
listed, both the process itself and its charge conjugate are implied
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Figure 1: Weighted real data and generated distributions of RichDLLk for kaon and pion track
candidates in bins of pseudorapidity (ETA) and momentum (P, MeV) over the full phase-space.

The output dimensionality of the discriminator network is 256 (Cramer metric uses multidimensional
output). The output layers of both generator and discriminator do not use activation functions.

We use quantile transformation to transform both features and target variables distributions into
standard normal. For our dataset, this results in faster convergence and higher output fidelity, than the
commonly used linear scaling. We use exponential learning rate decay.

4 Results

Figure[I]shows a comparison of weighted real data and generated distributions of RichDLLk for kaon
and pion track candidates, in bins of momentum and pseudorapidity. The binning is only applied
when plotting, while the model itself is trained on continuous input.

In order to quantify the quality of the model in various regions of the phase space, area under the
ROC curve (AUC) values were calculated in momentum-pseudorapidity bins for binary classification
cases using both real data and generated variables. Figure 2]shows differences between AUCs divided
by uncertainties for real and generated samples for discriminating kaons, muons and protons form
pions, classifying with the RichDLLk, RichDLLmu, and RichDLLp variables, respectively, in bins
of momentum and pseudorapidity. The uncertainty of the differences between AUC values was
estimated using bootstrap [Bertail et al| [2009]. Most of the differences are not greater than a few
standard deviations, with no obviously biased regions, possibly with the exception of marginal bins
that lack training statistics.
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Figure 2: Differences between the real- and generated-sample areas under ROC-curves divided by
uncertainties for discriminating kaons, muons and protons from pions, classifying with the RichDLLk,
RichDLLmu and RichDLLp variables, respectively, in bins of momentum and pseudorapidity.

5 Conclusion

High-quality fast simulation of the RICH detectors at LHCb can be achieved using generative models.
In particular, GANs have the potential to be a good candidate for such an approach. As training can
be done on real data directly, there is no need for later tuning and corrections of the model, compared
to the way regular accurate detector simulation algorithms are used.

The proposed model shows a good approximation of the real data distributions with some imper-
fections in low-statistics regions. The systematic effects due to the usage of this approach of fast
simulation fast simulation are thus expected to be small, which gives good prospects to the the future
measurement.
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