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Abstract

One of the aims of both linear and non-linear dimension reduction is to find a
reduced set of collective variables that describe the data manifold. While al-
gorithms return abstract coordinates such as spaces spanned by eigenvectors of
data-dependent matrices, one can often associate these with features of the data,
and hence with domain-related meaning. Usually, finding these domain-related or
physical meanings is done via visual inspection by an expert. Our work formulates
this problem as sparse, non-parametric, non-linear recovery of the manifold coor-
dinates over a user-defined dictionary of domain-related functions. We show that
the original problem can be transformed into a linear Group Lasso problem, and
demonstrate the effectiveness of the method on molecular simulation data.

1 Motivation: manifold learning for collective variables

Our motivating application is the understanding of the slow dynamic modes of molecules and other
atomic systems from molecular dynamics simulations. In such simulations, the positions of atoms
within a molecule are sampled as they proceed through time from some initial conditions. Even
though the vector of atomic coordinates can take any value, due to interatomic interactions, the
relative positions of atoms within the molecule lie near a low-dimensional manifold.

Manifold Learning (ML) methods have become the framework of choice for finding these collective
variables in molecular systems in a data-driven way. These variables correspond to macroscopically
interesting transformations of the system, and can explain some of its properties [Clementi et al., 2000,
Noé and Clementi, 2017]. Figure 1 illustrates several manifolds learned from molecular dynamics
simulations. The learned collective variables are, in these cases, identified by visual inspection as
corresponding to bond torsions, also known as dihedral angles.
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Figure 1: Collective coordinates with physical meaning in Molecular Dynamics (MD) simulations. 1a-
1c Diagrams of the toluene (C7H8), ethanol (C2H5OH), and malonaldehyde (C3H4O2) molecules,
with the carbon (C) atoms in grey, the oxygen (O) atoms in red, and the hydrogen (H) atoms in
white. Bonds defining important torsions gj are marked in purple and blue. The bond torsion is the
angle of the planes inscribing the first three and last three atoms on the line (1g). 1d Embedding
of the configurations of toluene into m = 2 dimensions, showing a manifold of d = 1. The color
corresponds to the values of the purple torsion g1. 1e, 1h Embedding of the configurations of the
ethanol in m = 3 dimensions, showing a manifold of dimension d = 2, respectively colored by the
blue and purple torsions in Figure 1b. 1f, 1i. Embedding of the configurations of the malonaldehyde
in m = 3 dimensions, showing a manifold of dimension d = 2, respectively colored by the blue and
purple torsions in Figure 1c. Data is from Chmiela et al. [2017].

2 Problem formulation

We propose to replace such visual interpretation with a statistical procedure. We make the standard
assumption that the observed data D = {ξi ∈ RD : i ∈ 1 . . . n} are sampled i.i.d. from a smooth
Riemannian manifold 1 (M, id) of intrinsic dimension d embedded in a feature space RD by
the inclusion map, with id the identity metric with respect to RD. We assume that the intrinsic
dimension d ofM is known. Furthermore, we assume the existence of a smooth embedding map
φ :M→ φ(M) ⊂ Rm, where typically m << D. That is, φ restricted toM is a diffeomorphism
onto its image, and φ(M) is a submanifold of Rm. We call the coordinates φ(ξi) in thism dimensional
ambient space the embedding coordinates; let Φ = [φ(ξi)

T ]i=1:n ∈ Rn×m. In practice, the mapping
of the data D onto φ(D) represents the output of an embedding algorithm, and we only have access
toM and φ via D and its image Φ.

1The reader is referred to Lee [2003] for the definitions of the differential geometric terms used in this paper.
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In addition, we are given a dictionary of user-defined and domain-related smooth functions G =
{g1, . . . gp, with gj : U ⊆ RD → R}. Our goal is to express the embedding coordinate functions
φ1 . . . φm in terms of functions in G. More precisely, we assume that φ(x) = h(gj1(x), . . . gjs(x)),
where h : O ⊆ Rs → Rm is a smooth function of s variables, defined on a open subset of Rs
containing the ranges of gj1 , . . . gjs . Let S = {j1, . . . js}, and gS = [gj1(x), . . . gjs(x)]T . The
problem is to discover the set S ⊂ [p] such that φ = h ◦ gS . We call S the functional support of h, or
the explanation for the manifoldM in terms of G. For instance, in the toluene example, the functions
in G are a set of torsions in the molecule, s = 1, and gS = g1 is the explanation for the 1-dimensional
manifold traced by the configurations.

3 The MANIFOLDLASSO Algorithm

We start from the well-known mathematical fact that, for any differentiable functions f, g, h, when
f = h ◦ g, the differentials Df,Dh, and Dg at any point are in the linear relationship Df = DhDg.
The key idea of our method is to compose differentials of functional covariates to reconstruct the
differentials of the manifold embedding coordinates.

The MANIFOLDLASSO algorithm implements this idea. The Algorithm takes as input dataD sampled
from an unknown manifoldM, a dictionary G of functions defined on an open subset of the ambient
space RD that containsM, and an embedding Φ in Rm. The output of MANIFOLDLASSO is a set S
of indices in G, representing the functions in G that explainM.

The first part of the algorithm calculates the necessary gradients, while the second finds the support S
by solving the following Group Lasso [Yuan and Lin, 2006] problem:

arg min
β∈Rmn′p

∑
i∈I

m∑
k=1

||yik − xiβik||22 +
λ√
mn′

p∑
j=1

||βj ||2. (1)

In the above, yik = gradM φk(ξi) ∈ Rd and xi = gradM G(ξi) ∈ Rd×p are the gradients of
the embedding coordinates and dictionary functions onM, and βj = ∂h1:m

∂gj
(D) ∈ Rmn′

are the
learned coefficients corresponding to dictionary function gj . The need for regularization arises in the
general case when p > d. The algorithm can be run on subsets of points I ⊂ 1 : n with |I| = n′,
and therefore has runtime controllable independently of φ. The learned coefficients are the partial
derivatives of the embedding coordinates with respect to the dictionary. The regularization term
encourages entire βj groups to be identically 0. The need for regularization is clear, since in general
p > d. We base our choice of λ on matching the cardinality of the support to d; that is, we increase λ
until only d functions are selected. In the extended paper, the use of Group Lasso for sparse functional
regression was introduced for the first time, and recovery conditions for the set S were given [Meila
et al., 2018].

3.1 Preprocessing dictionary gradients

Dictionary gradients xi are assumed to be analytically available with respect to RD, but several
preprocessing steps are required. First, since the intrapoint planar angle featurization we use to
generate the embeddings in 1 is redundant with respect to the set of molecular shapes, gradients
of dictionary functions are not well-defined. We thus utilize the method of Addicoat and Collins
[2010] to project gradients obtained using automatic differentiation into the shape space embedded
in RD. We then normalize all dictionary tangent bundles to have norm one. This is necessary to
ensure that functions with larger gradients are not favored by our penalty. We then estimate tangent
coordinates Ti to the data manifoldM using weighted laplacian PCA [Chen et al., 2013], and project
the normalized gradients onto the manifold to obtain the gradients onM. This favors dictionary
functions whose gradients are tangent to the manifoldM, and penalizes the gj’s which have large
gradient components perpendicular toM.

3.2 Estimating coordinate gradients

The coordinate gradients yik are not analytically available. Instead, we estimate yik using the
Riemannian metric Gi ∈ Rm×m of the embedding with respect to the original high-dimensional data
[Perraul-Joncas and Meila, 2013]. The matrix Gi is the estimated value at point i of the pushforward
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Riemannian metric g, which is the unique Riemannian metric on φ(M) so that (φ(M),g) is isometric
to (M, id). This enables estimation of yik in the local basis Ti:

yi,1:m = (AiA
T
i )−1AiB

T
i Gi, (2)

where
Ai =

[
TTi (ξi′ − ξi)

]
i′∈Ni

∈ Rd×ki , Bi = [φ(ξi′)− φ(ξi)]i′∈Ni
∈ Rm×ki , (3)

and Ni are the neighbors of datapoint ξi [Luo et al., 2009].

4 Experiments

(a) Toluene (b) Ethanol

(c) Malonaldehyde

Figure 2: The left panels display ||βj ||2 j ∈ 1 : p as a function of the regularization parameter λ, for
each of the three datasets shown in Figure 1. Colors represent individual dictionary functions (bond
torsions). MANIFOLDLASSO selects the bond torsions visualized in Figure 1. The remaining panels
display, each for one of the embedding coordinates φk, the norm of the vector ~βI,j,k j ∈ 1 : p. These
confirm the visual association of g1 with φ1,2 and g2 with φ3 in ethanol. Axes are linear between 0
and 1, and logarithmic above 1. Error bars summarize the outcomes of repetitions of sampling I .

5 Contributions

We have presented a novel paradigm for assigning meaning to the output of dimension reduction
algorithms. In our paradigm, the scientist inputs a dictionary G of functions to be considered
as possible collective coordinates. This relieves domain experts from visually examining every
possible function in G, and extends beyond mapping single coordinates to single functions to instead
associating smooth maps of a subset of functions to a set of coordinates. This approach is very
general: we do not rely on a particular embedding algorithm, and do not assume a parametric
relationship between the embedding and the functions in the dictionary G. Simplified versions of
MANIFOLDLASSO can be used on domains that are not manifolds, such as the output of PCA, and
non-linear sparse functional regression. Experiments show that the MANIFOLDLASSO Algorithm is
robust to noise and successfully replaces visual inspection. The gradient group lasso approach and
use of the Riemannian metric estimate Gi to pull back vectors between the tangent bundles ofM
and φ(M) are also original and of independent interest.
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