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Abstract

Discovering the optimal materials and conditions for hydrogen storage is cru-
cial to the development of fuel cell vehicles. In this work, we present a method
towards this goal by combining meta-learning and high-throughput molecular
simulations. Our meta-learning model efficiently utilizes the datasets generated
by high-throughput simulations and applies the physical domain knowledge of
hydrogen storage. Comparing to training many small models each on a material,
meta-learning showed more accurate prediction, higher data efficiency and im-
proved generalization capability. Our meta-learning approach not only accelerates
the workflow of computational materials discovery, but also introduces a practical
application of meta-learning and few-shot learning in the physical sciences.

1 Introduction

Hydrogen fuel cell vehicles combine the advantages of both traditional engines and electric motors. [1–
3] In fuel cell vehicles currently on the market, hydrogen is stored as a compressed gas at 700 times
the atmospheric pressure. [4] Such high pressures require a strong fuel tank and pose safety threats
after a severe traffic accident. [5, 6] Recently, there has been growing interests in storing hydrogen
using nanoporous materials. By using a nanoporous material to adsorb hydrogen in the fuel tank, a
storage capacity comparable to commercial compressed hydrogen tanks can be achieved at much
lower pressures. [7] This allows for more flexibility in the shape of the fuel tank in a vehicle and
improves its safety. Typically, the amount of molecules adsorbed in a nanoporous material is a
function of the thermodynamic condition, i.e., temperature and pressure. Extensive research has been
done in the physical science fields to model the adsorption as closed-form functions. [8]

One can use regression models to predict the hydrogen adsorption as a function of pressure and
temperature, but finding the optimal materials to store hydrogen requires traversing enormous amounts
of possible material structures. Although carrying out millions of experiments is evidently unfeasible
under current technology, high-throughput molecular simulations can be utilized to obtain hydrogen
storage data for large numbers of nanoporous materials. [9, 10] For each material, usually a dataset
of hydrogen adsorption with varying temperatures and pressures is collected, so the high-throughput
simulation results in hundreds or thousands of small datasets.

A common practice in materials discovery is to apply a simple model on each of the "base" datasets
and run those models separately to make predictions, namely solving many small regression tasks
independently. However, such a workflow suffers from several shortcomings. A simple model with
few parameters imposes a strong inductive bias (assumption) which limits its capacity, and a complex
model has greater risk in overfitting. Because each model is independently trained, similarity or other
relationship among materials cannot be utilized.

Therefore, we leveraged meta-learning combined with high-throughput simulation to address the
aforementioned problems. By virtue of being trained on the meta-dataset of many base tasks, a
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meta-learning model can efficiently adapt to new tasks especially with limited data. [11–15] Here,
we describe a meta-learning method to predict the hydrogen adsorption as a function of temperature
and pressure given a few example data points for any nanoporous material. Comparing with training
many small models, the advantages of our meta-learning approach include (1) lower prediction errors
due to larger model capacity, (2) lower sensitivity to lack of data which enables few-shot learning,
and (3) improved generalization in extrapolation capability.

2 Related Work

Machine learning has been used to aid the computational discovery of nanoporous materials. [16, 17]
The majority of existing research focused on predicting the property at the same thermodynamic state
for all materials, which requires training a different model when the condition of interest is changed.
A recent work [18] trained a neural network operating on both thermodynamic states and the material
structure to predict hydrogen storage, while we argue that its performance is intrinsically sensitive to
the quality of material structure representation in its input.

Our meta-learning model was constructed as an encoder-decoder network. A common meta-learning
approach is to generate an efficient initialization for adaptation or transfer leaning, [13] and model-
based meta-learning models have been developed on various architectures. [19, 14] Encoder-decoder
networks for meta-learning were also reported, [20–22] while they mainly used artificial datasets for
regression problems.

3 Methods

Dataset generation In this work, we performed high-throughput Monte Carlo simulations [23] for
211 all-silica zeolites (a subset of nanoporous materials with the chemical formula SiO2 [24]) which
are of interest in hydrogen storage. The hydrogen adsorption in each zeolite material was simulated at
8 temperatures ranging from 77.0 K to 275.9 K and 8 pressures ranging from 0.10 MPa to 40.34 MPa.
A base task for the meta-learning method consisted of 32 randomly selected state points, and 16
tasks were sampled from all data available in each zeolite. This produced an augmented meta-dataset
with 3376 base tasks, where 160 zeolite materials were randomly selected whose tasks constitute the
meta-training set.

Neural network for adsorption modeling First, we justify the usage of neural networks (NNs) in
predicting adsorption of a material as the traditional physical science wisdom can coincide with the
basic element of an NN. Equation 1 shows an adsorption model commonly used in materials science
and chemical engineering derived from physics domain knowledge. [8]

y = f(p, T ;A,B, n) =
Ae

B
T pn

1 +Ae
B
T pn

where y is the fraction the material occupied (y = 0 means the material is empty, y = 1 means full),
p is the pressure, T is the temperature, and A,B, n are parameters. Rearranging the equation obtains

y =
1

1 + e−(n ln p+B· 1T +lnA)

which is exactly the sigmoid function with x = (ln p, 1/T ) as the feature vector. It is straightforward
to extend the logistic regression into a neural network with sigmoid activation, and in this case the
physical interpretation is that the material has multiple types of adsorption sites to occupy.

Figure 1: The meta-learning network architecture.
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Meta-learning In a meta-learning algorithm, the error of a meta-learner over a distribution of
datasets p(D) is minimized. [13] Here, a dataset D = {x, y} contains the features x = (ln p, 1/T )
and the hydrogen adsorption y. The meta-learning model has the entire training set comprising
multiple variable-output pairs in its input, given as

y = f(Dtrain,x)

Such a formulation is different from common multi-task learning models whose outputs for many
tasks are predicted simultaneously [{yi, · · · , yn} = f(x)]. For those models, more output units
need to be added to predict a new material. In contrast, predicting a new material in meta-learning
only requires a different Dtrain sample. The encoder-decoder structure is chosen as the meta-
learning model because it is able to generate latent representations of each dataset (Figure 1). In the
physical sciences, it is especially common to use a small but physically reasonable model because its
parameters contain physical information about the system of interest. Regarding those parameters as
lower-dimensional representation of the system, it echos the encoder-decoder structure of our meta-
learning model as the model also gives a representation of a base dataset. The encoder fe(·) consists
of a point-wise feedforward network followed by max-pooling to make the latent representation
invariant to the permutation of samples in the base dataset. [25] The decoder fd(·) is a feedforward
network predicting the adsorption whose input includes the latent variables z for a specific task
(material) and the thermodynamic state x = (ln p, 1/T ),

z = fe(Dtrain), ŷ = fd(z,x)

Regularization of the neural network is implemented by penalizing the correlation among dimensions
in the latent space. The task-specific loss is formulated in a semi-supervised manner as to both
reconstruct the training examples and predict test examples,

Lθ(D) =
∑

(xi,yi)∈D

[yi − fd(fe(Dtrain),xi)]
2 + λ

∑
i 6=j

cov[fe(Dtrain)]ij

where the base training set Dtrain is a subset of D and cov[·] denotes the covariance matrix. λ is the
hyperparameter controlling the strength of regularization.

4 Results and Discussion

Table 1: Reconstruction accuracy of hydrogen storage data from the meta-learning network and individually
trained models. MLP(·) denotes a multi-layer neural network with number of hidden units listed in parentheses.

Model Mean MSE (×10−2) Minimum MSE (×10−2) Maximum MSE (×10−2)
Logistic regression 0.249 0.014 9.858
MLP(8) 0.070 0.006 0.705
MLP(16, 8) 0.019 0.006 0.184
Meta-learning 0.014 0.004 0.365

Figure 2: Few-shot performance of the meta-learning network
and independently training multiple models. Error bars refer
to the standard deviation of MSE on all 211 materials scaled
by 1/3 for better visualization. The same subsampling of 8–48
thermodynamic states was used for all materials.

Our meta-learning model was compared
with the tradition in materials science that
one model is fit to each material of interest.
Such “curve fitting” is essentially a recon-
struction task since the objective is to ob-
tain a closed-form representation contain-
ing the material’s physical properties. In
our meta-learning model, this means the in-
put Dtrain = D and the network works as
an autoencoder. Table 1 shows the geomet-
ric average, minimum, and maximum mean
square errors (MSE) on the reconstruction
of hydrogen adsorption in all 211 materials.
The meta-learning network outperformed
the entirely physics-informed "logistic re-
gression" and the small NN with 8 hidden
units with regard to all metrics listed. It
also did not overfit the meta-training set.
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Training a relatively large NN on each ma-
terial indeed result in similar or lower MSE
than the meta-learning network, however
such NNs are dramatically overparametrized on datasets with only 64 samples and it takes even more
space to store the weights of all NNs than the original data.

Meta-learning is known to excel in few-shot learning problems where there is very limited data for a
new task. [13] Few-shot learning could be particularly useful in physical sciences since conducting
actual experiments can be very expensive. To investigate the few-shot learning capability of our
meta-learning network, the size of Dtrain was decreased from 64 to 8 by random sampling subsets
while the MSE was always evaluated on the entire dataset D. Figure 2 shows the MSE attained
by each type of model when reducing the base-training set size in each material. Compared to
training individual NNs, our meta-learning network is significantly less sensitive to the reduction of
base-training set. On the contrary, training a large neural network on each material suffered from a
dramatic increase in error with a decreasing training set.

Finally, we applied our meta-learning model to find the optimal condition of hydrogen storage for
each material. We consider the fuel tank of a hydrogen-powered car to be filled up to a pressure p1
and depleted to another pressure p0 when it is empty. We used p0 = 0.271 MPa and p1 = 3 MPa
based on reducing the infrastructure for fuel stations and the materials requirements for the tank. The
temperature of the fuel tank is kept constant, so the "optimal condition" refers to the temperature at
which the tank can provide maximum amount of hydrogen from filled to depleted, denoted as T ∗.
A unique T ∗ can be calculated for each material using the meta-learning network, however some
of them may fall outside of the temperature range of our high-throughput simulation dataset, and
this requires the network to extrapolate beyond the data distribution on which it was trained. For
example, the zeolite material with the largest hydrogen storage capacity is predicted by meta-learning
to have T ∗ ≈ 70 K, while the lowest temperature in the high-throughput simulation is 77 K (Figure 3).
Although the capacity monotonically decreases with temperature in the high-throughput simulation
data, the network still predicts a maximum. This prediction is successfully validated by additional
molecular simulations performed at temperatures below 77 K, as these simulation results are in
good agreement with the prediction given by an ensemble of 8 independently trained meta-learning
networks. Not surprisingly, training a neural network on data only for this zeolite led to very poor
extrapolation. It highlights the benefit of our meta-learning approach that the neural network gives
more accurate predictions by encompassing the information learned on multiple materials, and is
especially valuable in the example here because molecular simulations become more difficult at lower
temperatures.

50 100 150 200 250
Temperature [K]

0

5

10

15

20

25

W
or

ki
ng

 c
ap

ci
ty

 [g
/L

]

Initial simulation
Validation simulation
Meta-learning
MLP(16,8)
logistic regression

50 100 150 200 250
Temperature [K]

0

10

20

30

40

50

H
yd

ro
ge

n 
ad

so
rp

tio
n 

[g
/L

] p0 = 0.271 MPa
p1 = 3 MPa

Figure 3: Extrapolation of the meta-learning network to predict the hydrogen storage in a high-capacity zeolite.
The left column shows the storage capacity in the fuel tanks, and the right column shows the hydrogen adsorption
at p1 (upper branch, squares) and p0 (lower branch, triangles). The baseline of training an ensemble of 8
MLP(16, 8) models or logistic regression (the domain knowledge model for adsorption) on the data for this
zeolite is also shown.

5 Conclusion

We applied meta-learning to computational materials discovery by leveraging its benefits on robustness
to limited data and improved generalization. While it could be very expensive to perform high-
throughput simulations in the joint space of material structures and thermodynamic conditions,
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meta-learning provides a route towards overcoming this difficulty by making the maximum use of
available data. Apart from the decoder-encoder networks used in this work, other meta-learning
methods can also be applied in conjunction with high-throughput simulations in the physical sciences,
such as model-agnostic meta-learning [13] and memory augmented neural networks. [14] With
regression in meta-learning usually benchmarked on artificially created data, data obtained from
high-throughput simulations may serve as a novel real-world application of meta-learning methods.
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