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Abstract

We present deepCR, a deep learning based method for cosmic ray (CR) identifica-
tion and replacement in astronomical imaging data. We train and evaluate models
on Hubble Space Telescope ACS/WFC images of sparse extragalactic fields, glob-
ular clusters, and resolved galaxies. At a false positive rate of 0.5%, deepCR
achieves close to 100% detection rates in both extragalactic and globular cluster
fields, and 91% in resolved galaxy fields, which is a significant improvement over
the current state-of-the-art LACosmic. Compared to a parallel CPU implementation
of LACosmic, deepCR CR mask predictions run up to 6.5 times faster on CPU and
90 times faster on a single GPU. For CR inpainting, the mean squared errors of
deepCR predictions are 20 times lower in globular cluster fields, 5 times lower in
resolved galaxy fields, and 2.5 times lower in extragalactic fields, compared to the
best performing non-neural technique tested. This framework was first presented in
Zhang and Bloom|[2019]] along with an open-source implementation in PythonE]

1 Introduction

Astronomical imaging and spectroscopy data are frequently contaminated by cosmic rays (CR), which
are high-energy charged particles that create excess flux in the pixels hit when passing through solid
state detectors. CR artifacts must be identified and either masked or replaced, before further analysis
could be done with the image. It is straightforward to identify these artifacts by taking a sequence of
images of the same astronomical target. In such cases, a median image could be calculated from the
individual exposures, which is effectively free of cosmic ray randomly distributed in each individual
frame. Each one of the single images is then aligned and compared with the median image to identify
CR artifacts (cf. [Windhorst et al.|1994).

However, many cases call for algorithms to detect CRs in single images. For example, when detector
read-out times are non-negligible, or when sources of interest are transient, causing them to be
excluded from the median image, CR rejection with multiple exposures is sub-optimal, or in the
latter case, infeasible. In single images, CR artifacts can be distinguished from astronomical objects
such as stars and galaxies by the sharpness of their edges, because photons from astronomical targets
are smeared out when passing through Earth’s atmosphere and the telescope optics, which doesn’t
affect CR. The current state-of-the-art method is LACosmic [van Dokkuml, [2001]], which identifies
CR artifacts by Laplacian edge detection. However, LACosmic has two drawbacks. First, it creates
many false detections in under-sampled images where stars look as sharp as CRs, such as the case
of Hubble Space Telescope imaging. On the other hand, large CRs with smoother edges tend to be
missed. In addition, LACosmic is computation heavy, requiring substantial run-time even for the most
recent parallel implementation, astroscrappy [McCully et al.,|2018]. In this paper, we present a
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Figure 1: Neural network architecture of deepCR. Feature maps are represented by gray boxes while
the number of channels and feature map dimensions are indicated on the top of and to the left of each
feature map, respectively. Unfilled boxes to the right of blue arrows represent feature maps directly
copied from the left, which are to be concatenated with the adjacent feature map.

summary of Zhang and Bloom| [2019] which presented a novel deep learning based method named
deepCR for cosmic ray identification and replacement that significantly improved the aforementioned
issues. The framework and trained models are presented as an open-source project in Python.

2 Model Architecture

deepCR is formulated as a sequence of two independent deep neural networks, deepCR-mask and
deepCR-inpaint: deepCR-mask, given an input image, predicts a probabilistic map of each pixel
being affected by CRs, and deepCR-inpaint predicts what the pixel values would have been had they
not been affected by CRs. The probabilistic CR map is then turned into a binary CR mask by setting
a threshold. The basic architecture of both deepCR-mask and deepCR-inpaint is a modification of the
UNet [Ronneberger et al.l 2015, which is an encoder-decoder CNN with skip connections between
each depth of the encoder and decoder (Figure[I). The skip connections are important in that they
allow the decoder to have direct access to pixel level features such as edges, in addition to semantic
features attained from the network bottleneck, such as the approximate location of CR artifacts.

Binary cross-entropy loss is used in training deepCR-mask,
Lr =EM x log(1 — F(X)) 4+ (1 = M) x log(F(X))], (1

where F refers to the deepCR-mask, M the ground truth CR mask, and E is the expectation with
respect to training data. For deepCR-inpaint, mean squared error (MSE) loss is taken between the
predicted pixels under the inpainting mask (My) and the ground truth values. Instead of using the
ground truth cosmic ray masks (M) as the inpainting mask, which would require having ground truth
pixel values of CR affected pixels, we create custom inpainting mask for each image by sampling and
adding 1-9 CR masks from the rest of the dataset. As long as the M; do not overlap with M, we have
the ground truth pixel values a priori. This naturally allows for data augmentation. Although using
median images as ground truth allow for higher S/N training targets, [Lehtinen et al.|[2018]] showed
that training on noisy targets is comparable to training on clean targets both in terms of convergence
speed and final performance. The inpainting loss is then formulated as,

La = E[(G(X, M) o Mo (1 - M) —X oMo (1-M))?, 2

where o denotes element-wise multiplication. Here, G refers to deepCR-inpaint, X the input image,
M the cosmic ray mask, and M the inpainting mask. Element-wise multiplication by (1 — M) ensures
that the loss is not computed for parts of the inpainting mask that overlap with CR artifacts. Loss is
also not computed outside of the inpainting mask; otherwise deepCR-inpaint is forced to also learn
an identity function for those regions, which is both unnecessary and degrades model performance at
a fixed model capacity.
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Figure 2: Top row shows details of cosmic ray artifacts in Hubble image of galaxy cluster
EMACSJ2316.6. Middle panel shows cosmic ray as identified by deepCR-mask-2-32. Bottom
panel shows images with artifact pixels replaced by deepCR-inpaint-3-32.

Training deepCR-mask and deepCR-inpaint requires a set of training data consisting of cosmic ray
affected images (X) and ground truth cosmic ray masks (M). We use the astrodrizzle data pipeline
[Hack et al., [2012] to construct our training set from the Hubble legacy archive, which includes
multiple exposures of the same fields that provides the basis for us to derive accurate ground truth
cosmic ray labels. We also create bad pixel and saturation masks for which we do not backpropagate
gradients. Finally, we segment images and masks into chunks of 256 x 256, which results in a
training set of 8190 image stamps and a test set of 3360 image stamps. Test set images are chosen to
have different target fields than the training images and a wide range of exposure times.

3 Results

We train and evaluate models with different hyperparameters to examine the trade off between
accuracy and run-time, both important metrics for us. Each model variant is labeled with network
depth and number of channels at the initial layer, e,g., deepCR-2-32 would be a depth-2 network
with 32 channels at the first convolution layer (same as Fig. [I)). During training, sky background
levels are augmented by adding up to 3 times and subtracting up to 0.9 times the original background
flux. Such a data augmentation scheme helps prevent over-fitting on the discrete and limited range of
exposure times seen in the training set and improves test time performance, especially for exposure
times unseen during training.

We benchmark deepCR against baseline models separately on three categories of test data: extragalac-
tic field, globular cluster, and local group galaxies for which the stellar population is well resolved;
the density of astronomical sources, which are also sources of confusion during CR identification,
increases in that order.

3.1 Cosmic Ray Identification: deepCR-mask

Figure [3]shows CR detection ROC curves of deepCR-2-32 (hereafter deepCR) and the baseline model,
LACosmic. Since imaging noise makes it impossible to create objective ground truth cosmic ray
masks, the characteristic way by which astrodrizzle create cosmic ray masks could be learned by
deepCR during training but not LACosmic. To make a fairer comparison, we calculated additional
ROC curves with true positive rates evaluated from 3 x 3 kernel dilated predictions, which results in
ROC curves (shown in red) that does not penalize a model for not finding the exact cosmic ray shape
matching the ground truth. This removes any advantage deepCR may have gained.

As seen in Figure |3 deepCR achieved nearly 100% true positive rates (TPR) for both extragalactic
fields and globular cluster fields and > 90% for resolved galaxy fields, at a false positive rate (FPR)
of 0.5%. While mask dilation increased true detection rate drastically for LACosmic, deepCR still
leads a significant edge in all three types of fields, especially in resolved galaxy fields and at very low
FPRs. Quantitative comparison is presented in Table [l which also lists runtime performance. We



Table 1: Cosmic ray detection true positive rates (TPR) at a fixed false positive rate (FPR) of 0.5%.
TPRs in parenthesis show detection rates after mask dilation, as described in the main text. The last
two columns show runtime required to predict CR masks for one hundred 256 x 256 images.

extragalactic field globular cluster resolved galaxy runtime [sec]
Model TPR (0.5%) TPR (0.5%) TPR (0.5%) CPU GPU

deepCR-2-4  94.0% (96.9%)  96.2% (98.7%) 80.6% (89.7%) 14 0.1
deepCR-2-32  98.7% (99.2%)  99.5% (99.7%) 91.2% (93.7%) 7.9 0.2
LACosmic  69.5% (95.4%)  73.9% (952%) 53.4% (77.4%) 9.0  n/a
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Figure 3: Receiver operating characteristic (ROC) curves of cosmic ray detection. Line shapes and
the corresponding methods are indicated in the legends to the lower right. Red ROC curves (labeled
with + in the legend) differ from black ones in that true positive rates are calculated from a 3 x 3
kernel dilated predicted mask, with false positive rates kept the same at the non-dilated values. The
red curves therefore does not penalize a model for not finding the exact cosmic ray shape matching
the ground truth.

find that the smaller variant, deepCR-2-4, runs on one Nvidia Titan X GPU around 90 times faster
than the parallel CPU implementation of LACosmic (astroscrappy), and 6.5 times faster on CPU.
CPU implementation of each model is well parallelized and fully utilized 4 cores on an Intel Xeon
CPU.

3.2 Replacing Masked Pixels: deepCR-inpaint

We evaluate deepCR-inpaint against non-neural baseline models including biharmonic interpolation
and masked median sampling (5 x5 filter; medmask) that is used by LACosmic. Evaluation is done
on 9600 images stamps randomly chosen from the test set, with different generated inpainting masks
applied to each one of them. Inpainting performances and runtimes are listed in Table [2] which
shows that deepCR achieves MSEs 20 times lower in globular cluster fields, 5 times lower in resolved
galaxy fields, and 2.5 times lower in extragalactic fields, compared to the best performing non-neural
method we tested, biharmonic inpainting. The superior MSE performance of the deepCR-inpaint over
generic interpolation schemes is not surprising, given that our model is trained on the semantically
constrained domain of astronomical images. Our model is also drastically faster than non-neural
models on GPU. We do caution that further testing with astronomically meaningful metrics (such as
photometric fidelity) is required, before the inpainted pixels can be used for science.

4 Summary

We have presented a summary of the main results from deepCR [Zhang and Bloom), 2019]], a novel
deep learning based method for cosmic ray rejection, and showed that after proper training it outper-
forms LACosmic in terms of both speed and accuracy in mask prediction and image inpainting, on
HST ACS/WFC imaging data. We also expect deepCR to work well on ground-based or spectroscopic
data which are more homogeneous. To facilitate the use of the deepCR framework in real-world data
reduction pipelines, we have made our code with the ACS/WFC F606W trained models available as



Table 2: Image inpainting metrics of deepCR-inpaint as compared to baseline models. Runtime refer
to time required to inpaint one hundred 256 x 256 images. MSE is mean squared error.

extragalactic  globular cluster resolved galaxy runtime [sec]

Model MSE MSE MSE CPU GPU
deepCR-2-32  0.012 0.034 0.503 7.5 0.2
deepCR-3-32  0.012 0.033 0.479 12.7 0.3
medmask 0.105 1.511 5.946 1.0 n/a
biharmonic 0.041 0.669 2.578 109.5 n/a

an open source project, and we encourage the community to contribute by training additional models
that allow deepCR to be used in a wide range of detector configurations.
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