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Abstract

Organic reactions are usually clustered in classes that collect entities undergoing
similar structural rearrangement. The classification process is a tedious task,
requiring first an accurate mapping of the rearrangement (atom mapping) followed
by the identification of the corresponding reaction class template. In this work,
we present two transformer-based models that infer reaction classes from the
SMILES representation of chemical reactions. The first model, a sequence-2-
sequence model, reaches an accuracy of 93.8 % for a multi-class classification task
involving several hundred different classes. Initial results show that the second
model, a BERT classifier, is also able to achieve a high accuracy (95.3%) on this
classification task. The attention weights provided by the sequence-2-sequence
model gives an insight into what parts of the SMILES strings are taken into account
for classification, based solely on data. We study the incorrect predictions of this
model and show that it uncovers different biases and mistakes in the underlying
data set.

1 Introduction

Name reactions1 play a crucial role in the language of organic chemists. They represent an efficient
way to communicate what a chemical reaction does, how it is performed in the laboratory, or how it
works in terms of atomic rearrangements. It is for this reason that name reactions are currently used to
navigate large databases of reactions, to retrieve similar members of the same reaction class with the
purpose of helping chemists to analyze and infer optimal reaction conditions. Today, several hundreds
of name reactions exist in the RXNO ontology [1]. Quite often their name honors who discovered
that chemical reaction or who refined earlier known transformations raising their popularity. An
example is the Friedel-Crafts reaction, named after Charles Friedel and James Mason Crafts, who
discovered the catalytic effect of aluminum chloride in electrophilic substitutions. Name reactions
can also be named after the reaction type, using the initials or referring to structural features.

In the last decade, computer-based systems [2, 3, 4, 5, 6] became an important asset available
to chemists for reaction prediction tasks. Nevertheless, the knowledge of the name reaction of a
predicted outcome has a great value for expert chemists to assess the quality of the prediction. For
this reason, the demand for robust algorithms to categorize chemical reactions is high. The current

1For convenience, in this work “name reaction” refers to reaction classes that have an established name in
chemistry, and not only to reactions that carry the name of the discoverer(s).

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.



state-of-the-art in reaction classification is represented by commercially available tools [7, 8], which
classify reactions based on a library of expert-written rules. These tools typically make use of
SMIRKS [9], a language to describe transformations in the simplified molecular-input line-entry
system (SMILES) format [10]. Classifiers based on machine learning have the potential to increase
the robustness to noise in the reaction equations and to avoid the explicit formulation of rules. Among
the few attempts made to infer name reaction using AI-based technologies, we report the work of
Schneider et al.[11], in which authors developed a reaction classifier based on reaction fingerprints.
Unfortunately, the limited set of reaction classes used (only 50 most important ones) makes it difficult
to judge how this algorithm would perform on a more comprehensive set.

Here, we use a labelled set of chemical reactions as ground truth to train a FastText classifier [12]
and two transformer-based models as architecture [13, 14]. The ground truth data is composed of
chemical transformation represented as SMILES, and its labelling (classification) was performed
using NameRXN [7]. Instead of relying on the formulation of specific rules and on the need to have
every reaction properly atom-mapped, our model learns the atomic motifs that differentiate reactions
belonging to different classes. We show that the transformer-based sequence-2-sequence model was
able to match the ground-truth classification with an accuracy of 93.8%. The mismatches are mainly
related to unrecognized reactions, some of which are correctly classified by our model. Moreover,
the transformer-based architecture shows a very high level of robustness towards SMILES errors
representation. We report cases where, despite an error in the converted molecules, our model was
still able to understand the reaction that was originally described by chemists in the patent procedure
text. We also observe that the encoder-decoder attention provides insights into the essence of the
chemical transformation of the corresponding class, by providing larger values for the weights of the
atoms involved in the reaction center. In an additional experiment we show that BERT classifier [14]
is able to predict the ground truth class with an accuracy of 95.3%.

2 Data & Models

The data consisted of 2M reactions extracted from the Pistachio database [15] split into train,
validation and test sets (90% / 5% / 5%). The reaction data is classified with NameRXN [7], a rule-
based software that classifies more than 900 different reactions. The classification is organized in
superclasses [16], reaction categories and name reactions according to the RXNO ontology [1]. For
more detail on name reactions and their categories, we refer the reader to the work of Schneider et al.
[17]. As commonly done, we represent the chemical reactions with SMILES (Simplified Molecular-
Input Line-Entry System). We tokenize the reaction SMILES as in Schwaller et al. [5] without
enforcing any distinction between reactants and reagents. Therefore, our method is universally
applicable, including those reactions where the reactant-reagent distinction is subtle [18].

For the target of the transformer model, we split the class prediction into superclass, category and
name reaction prediction. This means, for example, that the target string for the name reaction
"[1.2.3]" would be "[1] [1.2] [1.2.3]". To have a baseline, we trained a supervised classifier using
FastText [19, 12]. The second model is an autoregressive encoder-decoder transformer model [13].
We constructed a model with 4 encoder layers and 1 decoder layer. As the source and target are
dissimilar, we did not share encoder and decoder embeddings. For the remaining hyperparameters,
we used the same as were used for the training of the Molecular Transformer [5, 20], which is
state-of-the-art in chemical reaction prediction.

One of the major recent advancement in natural language processing is BERT [14], which compared
to the seq-2-seq architecture only consists of a transformer encoder with specific heads that can
be fine-tuned for different tasks such as multi-class prediction. In an additional experiment, we
pretrained a BERT using masked language modeling loss on the chemical reactions and fine-tuned on
the name reaction classes. Compared with the hyperparameters of the BERT-Base model in [21], we
decreased the hidden size to 256, the intermediate size to 512, and the number of attention heads to 4.
For the pretraining we set 500k steps with a learning rate of 1e-4 and a maximum sequence length of
256, the rest of the parameters were kept as suggested in [21]. For the classification training, we only
changed the learning rate to 2e-5 and kept the maximum sequence length of 256.

2



3 Results and Discussion

A summary of the results can be found in Table 1. We observe that a simple N-gram sentence
classification model cannot capture the details of the reactions and is only able to correctly match
the ground truth 68.4 % of the time. The transformer enc4-dec1 model matched the ground truth
classification with 93.8%. The Reaction BERT classifier predicted the correct name reaction with
an accuracy of 95.3%, therefore, achieving slightly better results than with the seq-2-seq approach.
However, losing the ability of observing the hierarchy in the reaction classes. An elaborate comparison
of the two models exceeds the scope of this paper and will be presented in a further study. Here we
analyze the transformer enc4-dec1 model and its predictions in more detail.

Table 1: Classication results

Model Validation Accuracy [%] Test Accuracy [%]

fasttext default settings 41.4 41.6
fasttext 10-gram, dim 100 68.2 68.4
transformer enc4-dec1 93.7 93.8
BERT classifier 95.1 95.3

We identified different types of incorrect predictions by the transformer enc4-dec1 model. They
are summarized in Table 2. Most errors are related to the "Unrecognized" class of the RXNO
ontology. The most frequent error type is the prediction of a reaction class for a reaction classified
as "Unrecognized" (64.1% of all incorrect predictions), and the second most frequent error type is
predicting "Unrecognized" when a class should be predicted (21.7%). Out of the remaining errors,
roughly a third predict an incorrect superclass (first number of the class string, 4.8%), a third predict
an incorrect category (second number of the class string, 4.6%), and a third predict the incorrect name
reaction (third number of the class string, 4.8%).

Table 2: Types of incorrect predictions of the transformer enc4-dec1 model on the test set

Count Percentage

Correctly predicted 104077 93.78%
Model predicts name reaction instead of "Unrecognized" 4419 3.98%
Model predicts "Unrecognized" instead of name reaction 1500 1.35%
Incorrect name reaction 333 0.30%
Incorrect superclass 330 0.30%
Incorrect category 317 0.29%

In Table 3, we show the reaction classes for which our model makes incorrect predictions most
frequently. Due to the little information that can be gained for reactions classes with very few
examples, we restricted this analysis to reactions with at least 20 occurrences in the test set. For
half of these reaction classes (5 out of 10), the most common error source is the model failing to
recognize the reaction class and predicting "Unrecognized". Four other cases involve reaction classes
of the superclass 11, “Resolution reactions”. The classification of reactions in the superclass is
understandably more complicated since, in general, they do not involve any atomic rearrangements as
such. Other than that, the most frequent mistake is the prediction of the "Williamson ether synthesis"
class instead of "Ether synthesis". Both reaction classes are related and result in the formation of
an ether. The difference is that for the "Williamson ether synthesis" the ether is generated from an
alcohol group of the reactant, while it is derived from a carbonyl group for the "Ether synthesis".

Although the large number of "Unrecognized" reactions in Pistachio makes an extensive (human)
analysis difficult, a few dozen cases provide interesting insights. Part of the "Unrecognized" reactions,
should actually belong to a name reaction. The rules-based systems fails in this assignment, which is
instead is successfully completed by our model. This shows that a data-driven approach can be more
robust than rule-based models. Another part belongs to examples occurring in multiple reactions.
In this case, the reaction cannot be classified into a single name reaction, and our model predicts
one of the corresponding reactions. An additional part corresponds to molecules that are incorrectly
parsed in Pistachio. If the SMILES string of a molecule involved in the reaction was incorrectly
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Table 3: Worst-predicted reaction classes with more than 20 occurrences in the test set for the
transformer enc4-dec1 model.

Reaction class Accuracy [%] Most frequent incorrectly predicted class

11.8.3 Chloride salt formation 32.0 11.9 Separation
1.7.13 Ether synthesis 45.5 1.7.9 Williamson ether synthesis

9.7.140 Defluorination 47.8 0.0 Unrecognized
11.7 Racemization 53.2 11.5 Isomerization
11.5 Isomerization 61.5 11.1 Chiral separation

2.5.2 Imidic ester + amine reaction 61.9 0.0 Unrecognized
9.7.148 Imine hydrolysis 64.5 0.0 Unrecognized
9.7.147 Deamination 69.4 0.0 Unrecognized

11.6 Purification 72.5 11.9 Separation
10.4.2 Methylation 72.7 0.0 Unrecognized

derived from the name, rule-based approaches fail to recognize the atomic rearrangements and thus to
classify the reaction. For minor parsing errors, our model shows its potential, recognizing the correct
transformation in several instances.

Figure 1 shows the attention vectors for four different chemical transformations. Similar to forward
chemical reaction prediction [22, 5], we note that the larger weights are associated with the atoms
that are part of the reaction center. Just like a human expects to see a certain group of atoms based
on the name reaction, the decoder learned to focus on the atoms involved in the rearrangement to
classify reactions.

4 Conclusion

In this work, we focused on the data-driven classification of chemical reactions using neural machine
translation architectures.

Our transformer-based seq-2-seq model could learn the classification schemes using a broad set
of chemical reactions as ground-truth labelled with the use of commercially available reaction
classification tool. We match the rule-based classification with an accuracy of 93.8%̇. Out of the
6.2 % of incorrect predictions, 5.3 % are linked to the "Unrecognized" class of the underlying database.
The model is able to learn the atomic environment characteristic of each class and provides a rationale
easily interpretable by expert chemists. The possibility to understand the reasoning behind each
classification may help the end-user chemists along the adoption process of these technologies.

To the best of our knowledge, this is the first work that applied a BERT-like pretraining [14] to
chemical reactions. In terms of classification accuracy, with 95.3%, the BERT classifier performed
slightly better than the transformer-based seq-2-seq model. The differences will be analyzed in
further work. We expect that the Reaction BERT can also be fine-tuned for other tasks than reaction
classification.
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