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Abstract

Hyperparameter optimization is a practical issue, and an interesting theoretical
problem in training of deep architectures. Despite recent advances commonly
used methods almost universally involve training multiple and decoupled copies
of the model, in effect sampling the hyperparameter space. We show that at a
negligible additional cost, results can be improved by sampling nonlocal paths
instead of points in hyperparameter space. To this end we interpret hyperparameters
as controlling the level of correlated noise in training, which can be mapped to an
effective temperature. The usually independent instances of the model are coupled
and allowed to exchange their hyperparameters throughout the training using the
parallel tempering technique of statistical physics. Each simulation corresponds
then to a unique path in the joint hyperparameter/model-parameter space. We
provide empirical tests, in particular for dropout and learning rate optimization. We
observed faster training and improved resistance to overfitting, and a systematic
decrease in the absolute validation error, improving over benchmark results.

1 Introduction

The remarkable performance of machine learning models was paid for with an increased model
complexity. Part of it is due to architectural choices, but an important aspect is the growth of the
number of hyperparameters, whose different nature is laid bare by the distinct nature of training,
involving a double loop of optimizations. The inner loop finds the best weights – with hyperparameters
held fixed – while the outer loop is responsible for finding the optimal value of hyperparameters.

Many HO approaches were developed [Bergstra et al., 2011]; the simplest ones are grid- or random
searches, but their weakness is poor scaling and failure to reuse information obtained from previous
parameter choices. A family of methods addressing the latter issue arise in the Bayesian framework:
the choice of new values to be evaluated is informed by the performance of the model with the
previous assignments [Snoek et al., 2012]. High computational cost of evaluation inspires additional
strategies, e.g. bandit methods, to leverage cheaper, but cruder results obtained with partial datasets.
All of the above HO strategies, however, share a key characteristic: HO is decoupled from that of the
weights, and amounts to a more or less clever point sampling of the hyperparameter space, using the
validation dataset only. The PBT genetic HO algorithm [Jaderberg et al., 2017] overcomes this issue
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by optimizing in both weights and hyperparameter space, however, in a greedy way. It cannot be thus
guaranteed to explore space in an unbiased way, and may explicitly depend on initial conditions .

Here, we propose a radically different strategy: coupling the usually independent copies of the model
at different hyperparameter values during the training. The copies are allowed to exchange their
hyperparameters as the optimization of the weights progresses, tracing out a highly nonlocal trajectory
in the product of hyperparameter and weight spaces. The trained model is thus not characterized
by a point value of the hyperparameters, but rather by a path or history. The exchange procedure is
based on the physical technique of parallel tempering [Swendsen and Wang, 1986], which depends
on a mapping of the hyperparameter values to an effective “temperature" of the model we introduce.
We demonstrate empirically, that this HO approach – which leverages the training dataset – has
desirable properties: the models are more resilient to overfitting, achieve smaller overall errors, and
achieve them faster. The method is parallelizable, and the computational overhead over usual grid
searches is negligible. We show numerical tests of the approach on neural nets trained on EMNIST
and CIFAR-10 datasets. The discussed examples of hyperparameters include the learning rate and
drop-out rate, among others.

2 Hyperparameters as controls of smoothness of potential landscape
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Figure 1: Diffusion curves for model weights (calculated as Euclidean distance between weights vector at initial
time t0 and the vector at epoch t) for replicas of the model at different rate of Dropout, learning rate and L2
regularization. See discussion in the main text for details.

Direct noise injection, whether to the inputs, weights or gradients, aids generalization [Sietsma and
Dow, 1991, Neelakantan et al., 2015]. Theoretically, the effect is analogous to introducing particular
regularizations [Bishop, 1995, An, 1996] smoothing the cost function. This is also true for non-white
noise introduced “indirectly", e.g by mini-batches. We will benefit from an intuitive – if not always
rigorous – picture relating various kinds of noise to a parameter controlling effective smoothness
of the potential landscape, similar in spirit to temperature. Common hyperparameters, such as the
learning rate, dropout or batch size, can be treated on the same footing. In the case of Langevin
noise, the temperature analogy is exact [Seung et al., 1992]: the gradients are corrupted by white
noise ξ with a variance 〈ξi(t)ξj(t′)〉 = 2Tδijδtt′ , resulting in a Langevin equation, at long-times
converging to a Gibbs probability distribution P (W) = 1

Z exp (−βL (W)), from which weights
W can be sampled. The inverse temperature β is set by the variance of ξ, and as a multiplicative
factor, controls the scale of variation of the potential landscape. Strong noise, i.e. large variance,
results in small β which “flattens" the landscape of L (W). Conversely, weak noise results in large β,
amplifying potential differences. Crucially, this extends also to cases where the noise is not white:
Though, strictly speaking, the variance of the noise is not the physical temperature anymore, it still
performs an analogous function: it controls the effective roughness/smoothness of the landscape, as
experienced by the random walker subject to such dynamics. Higher variance facilitates diffusion in
the high-dimensional space, improving ergodicity (see Fig. 1).

We consider examples of hyperparameters from this perspective, and examine their influence on
diffusion curves. In the case of SGD dynamics the noise variance can be computed explicitly [Zhang
et al., 2018]. Even though the noise is correlated, the variance scales as inverse batch size: |Nb|−1,
and thus smaller batch size smoothens the potential. Similarly, dropout regularization increases the
variance of neural outputs at training by a factor of inverse dropout retention rate p−1 [Hinton et al.,
2012], therefore amplifying noise and improving diffusion, as seen in Fig. 1. For the learning rate γ,
its magnitude is directly related to the size of discretization step of the Langevin equation, and by
dimensional analysis it is analogous to increasing the noise variance (thus temperature) by a factor of
γ. The case of L2 is different: an increased L2 diminishes the magnitude of the potential landscape
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variations, and so the initial diffusion is faster (see Fig. 1), however at later times the diffusion is
suppressed; the plateau value reached is the lower the stronger the regularization. Since, therefore, the
models do not diffuse at different rates, L2 does not satisfy the basic requirements of our procedure,
and we do not expect systematic improvements.

As generically there are many hyperparameters, and results such as above may not be available,
it is imperative to be able to systematically identify whether they are indeed related to effective
landscape smoothness. This can be tested exactly as above, with a diffusion experiment, i.e. a few
inexpensive SGD training runs at different hyperparamater values. Training the model with different
such hyperparameters can thus be intuitively thought of as minimizing the objective at different
intensities of noise, or, equivalently, in effective landscapes of varying degree of smoothness. We
emphasize that this notion of effective smoothness is a joint effect of the geometry of the cost function
and the dynamics imposed by the training algorithm (with its parameter choices). We will use this
observation to construct a hyperparameter parallel tempering procedure.

3 Replica exchange of hyperparameters

Algorithm 1 Training with replica exchange

INPUT: Number of replicas M , Inverse "temperature" (hyperparameters) β = (β1, β2, . . . , βM );
Number of steps for initialization ∆Ni; Number of SGD steps between exchanges ∆Ne; Ex-
change normalization parameter C; Number of steps T

OUTPUT: Weight configurations W = (W1,W2, . . . ,WM) of the replicas,
1: Initialization: ∀k ∈M , initialize weights Wk for each replica and set t = 0.
2: ∀k ∈M , perform SGD for ∆Ni steps. Update t← t+ 1 at each step.
3: Repeat:
4: ∀k ∈M , perform SGD for ∆Ne steps to update Wk. Set t← t+ 1 at each step.
5: Let Lt = (L (Wt

1) ,L (Wt
2) , ...,L (Wt

k) be validation losses at time t.
6: Randomly select a pair (m,n) of replicas with adjacent temperatures.
7: if ∆ = C (βm − βn) [L (Wm)− L (Wn)] ≤ 0 then
8: swap βm and βn
9: else

10: swap βm and βn with probability exp (−∆).
11: Update α, the acceptance ratio. Finish if t > T .

Our approach is to allow the model to change and exchange hyperparameters during training,
optimizing over paths in the combined weight and hyperparameter space. Inspired by problems
in statistical physics we use the parallel tempering (PT) [Swendsen and Wang, 1986]. In PT,
multiple Markov Chain Monte-Carlo (MCMC) simulations, or replicas, are run in parallel at different
temperatures, defining the levels of uncertainty in the objective function, i.e. the energy. The
temperatures are arranged in a ladder on which the states of the replicas are swapped with Metropolis-
Hastings acceptance criteria, ensuring the system satisfies detailed balance not only for each chain
individually, but also between the chains.The lower temperature chains’ ergodicity is radically
improved by temporarily performing MC moves at higher temperatures, where the landscape looks
flatter. This results in a non-greedy and nonlocal exploration. Indeed, PT is efficient in systems with
broken ergodicity, where configuration space is partitioned into separate regions with low probability
for inter-region transitions [Earl and Deem, 2005], e.g. in spin-glass simulations and protein folding
[Fukunishi et al., 2002]. It was also applied in training of Boltzmann machines [Desjardins et al.,
2010], and ML algorithms used in materials science [Chao et al., 2017, Mazaheri et al., 2019].

The resulting Algorithm 1 is shown in the table above. It accepts M replicas of the system, a vector β
of inverse temperatures, number of initialization and SGD steps between exchanges. Each of the M
copies is first run for ∆Ne steps, till they achieve relative equilibrium. Later, exchanges are proposed
every ∆Ne steps. The constant C in the acceptance ratio is responsible for normalization of the
exponent and may be required when the values of hyperparameter are very low, or too high.
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Figure 2: Columns L, C: Test error curves for LeNet architecture for PT training over Dropout p and learning
rate γ . In the upper/lower row results for EMNIST / CIFAR-10. The dark lines are running averages. Column
R: (Top) Exchanges between replicas differing in learning rates, for the ResNet architecture. Shaded in red: the
path in hyperparameter space taken by the best simulation. (Bottom) Test error curves for the ResNets. Dashed
lines correspond to the best annealed learning rate, while solid lines show the results with replica exchanges.

4 Empirical results

To validate the approach we conducted a series of experiments. First, on small LeNet-like models,
we investigated the effects of various types of hyperparameter-induced “noise" on weight diffusion
and tested the idea of hyperparameter replica exchange. We then moved to deep ResNets [He et al.,
2016] to verify applicability of our parallel-tempering-based algorithm to large scale models.

The experiments were performed on EMNIST-letters [Cohen et al., 2017] and CIFAR-10 [Krizhevsky
and Hinton, 2009] datasets. EMNIST-letters consists of 124800 training images and 20800 testing
images of shape 28× 28 pixels, with 26 classes. CIFAR-10 has 50000 training images and 10000
testing images, with 10 classes. Each image has shape 32× 32 pixels, and 3 channels. The validation
splits for both datasets were generated by random sampling of a training dataset taking 10% out. All
models were trained with a mini-batch size of 128.

Layer Size Activation
Input 32× 32× 1 -
Convolution 28× 28× 6 tanh
Avg Pooling 14× 14× 6 tanh
Convolution 10×10×16 tanh
Avg Pooling 5× 5× 16 tanh
Convolution 1× 1× 120 tanh
Fully Connected 84 tanh
Fully Connected 26 RBF

Table 1: Architecture for EMNIST

Layer Size Activation
Input 32× 32× 1 -
Convolution 28× 28× 6 relu
Max Pooling 14× 14× 6 -
Convolution 10×10×16 relu
Max Pooling 5× 5× 16 -
Convolution 1× 1× 120 relu
Fully Connected 84 relu
Fully Connected 10 softmax

Table 2: Architecture for CIFAR-10

The LeNet-like models are summarized in tables 1 and 2, and
the results are shown in Fig. 2. Replicas differing by a “tem-
perature" defined by Dropout and learning rate are evaluated.
The performance (classification error) of the best independent
replica, with a fixed hyperparameter value, is compared against
a PT solution, where replica swaps are introduced. In all of
the cases, for both datasets, the best PT path achieves a signifi-
cantly lower error rate. We also observed increased resilience to
overfitting in our small-scale simulations, though this requires
more careful study. It is worth noting, that for EMNIST an
error rate comparable to the best untempered results is achieved
in a much smaller number of epochs. Overall, the training is
at least as fast as for the independent simulations.

To showcase the flexibility of the method, and potential for
improvements in already efficient and optimized models, we
benchmark it on the residual architectures for CIFAR-10, fol-
lowing [He et al., 2016]. We use weight decay of 0.0001 and
momentum of 0.9, apply Batch Normalization, as in the original paper, and compare PT learning
rates to a fixed one after the initial learning rate annealing. The training begins with learning rate 0.1,
annealed once at step 32K; the total amount of training steps is 64K. In Fig. 2R test error curves for
ResNet20 and ResNet44 are shown, along with a visualisation of replica hyperparameter exchanges.
Introduction of the exchanges consistently reduces the minimal testing error for both architectures.
With eight replicas we obtain an improvement of 1.04% for ResNet20, and 1.66% for ResNet44.
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We expect larger gains with more replicas. The hyperparameter value of the the best individually
trained model (found by grid-search) is included in the parameter ladder for PT, together with a small
number of “suboptimal" values. PT improves on all of them, leveraging the replicas to explore the
parameter space nonlocally, as seen in the non-trivial replica trajectories throughout the training, in
particular the trajectory of the ultimately best one.

5 Conclusions

We introduced a new approach to improve model optimization based on coupling previously inde-
pendent simulations at different hyperparameter values via parallel tempering (PT). The method is
very general: it applies to any hyperparameter which admits interpretation as a temperature-like
quantity, in the very weak sense of facilitating weight diffusion during training. This diffusion test is
a simple experiment which can be performed at little cost to establish, whether any given parameter
is related to effective landscape smoothness. We show that this is the case for Dropout, learning
rate, but also Batch Normalization. The method is parallelizable, and similar in cost to standard grid
search. Experiments performed on LeNet (with CIFAR and EMNIST datasets) and ResNet (with
CIFAR) architectures, showed consistently lower test error. In particular, we obtain improvement
over the benchmark results for ResNet20 and ResNet44 on the CIFAR dataset. We discuss potential
generalizations.
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