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Abstract

We present an automatic protocol for the determination of complex reaction mech-
anisms and reaction networks. Starting from a root node, new nodes are spawned
recursively by adding an artificial force between two or more atoms (attractive
for unbonded, repulsive for bonded) and carrying out a quantum mechanical op-
timization as described by Maeda and coworkers to generate new products that
are kinetically accessible. A graph convolutional neural network is used to select
the atoms which are subject to these forces, rapidly pruning unpromising search
directions in the generation of child nodes. Paths in the resulting network are
then automatically passed to transition state calculations which determine precise
barriers for all elementary steps. The complete reaction network can then be used
to simulate expected product ratios and selectivities.

1 Introduction

The rational design and improvement of chemical reactions greatly benefits from a comprehensive
understanding of the underlying mechanism of the reaction of interest. These reactions are usually
complicated, multi-step transformation, often involving catalysts or other auxiliary reagents, and a
wide variety of products may result[1]. Complicating matters further, multiple competing mechanisms
may be possible, while side-reactions (unwanted products) and thermodynamic sinks may prevent
the desired reaction from being the dominant pathway[2]. The ability to design efficient and selective
chemical reactions would allow for the rapid development of new materials, alternative green energy
storage methods, preparation of commodity chemicals from renewable feedstocks, and cheaper fine
chemical and pharmaceutical manufacturing.

Exploration of the chemical space of a collection of molecules, the space of stable molecules that can
be obtained by a sequence of chemically reasonable transformations, in a balanced (that is, unbiased)
and automated way can be used to generate reaction networks –graphs of the local chemical space– in
which nodes represent reaction products and the edges connecting the nodes are elementary chemistry
steps with a characteristic associated reaction barrier[3]. Such a network can be used to predict which
pathways are operative for a certain set of reagents, and therefore also predict product ratios and
selectivities.

Unfortunately, the chemical space of a set of molecules grows very rapidly with the size and
complexity of the reactant molecules. Effectively sampling this space requires efficient tools to prune
unproductive search directions[1]. It remains an open question as to how this sampling method can
be accomplished in an automated manner. In this work, we describe our use of a neural network to
effectively provide this critical, automatic pruning step, in the greater context of automatically and
efficiently discovering reaction mechanisms without any user interference.
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Figure 1: Potential energy surface with points of interest labeled. The orange path represents the path
of the AFIR trajectory from the first minimum (blue dot) toward the AFIR attractor (red dot). The
short blue path represents a relaxation to the second minimum, i.e. the product. The crossed-out
(purple) AFIR attractors are of the type eliminated by the neural network screen. Note that there are
no minima located near these attractors except for the starting point.

2 Methods

The Artificial Force Induced Reaction (AFIR) method of Maeda is a conceptually simple way of
inducing relatively low-barrier chemical reactions [4]. In this scheme, a quantum mechanical-based
optimization of two molecules is carried out in which an artificial constant force has been added
between two atoms in the molecules, pushing them together (and dragging the rest of the molecule
around with it, though it is free to adopt whatever conformation is necessary to lower the energy).
This constant force serves to pull reactants over any activation barriers to generate products. The main
challenge in this scheme is selecting which pairs of atoms should be pushed together. A conceptually
related idea is the ZStruct2 method of Zimmerman, which seeks to find “driving coordinates” which
correspond to interesting elementary steps, such as bond-making/breaking[5]. In both cases, the
selection of these search directions is the key step to efficient exploration of chemical space. Once
these search directions are determined, we employ the AFIR method to generate the reaction network.
The exact transition states are determined by use of an automated TS search workflow [6].

The AFIR method can be thought of as creating attractors on the potential energy surface which pull
the system from one potential well to another. These attractors are not in general located at actual
minima because this would require knowing the structure of the product. However, since most of the
degrees of freedom of the molecules are unconstrained, as long as the one constrained bond distance
is reasonable, the attractor will be located fairly close to a minimum. If the constraint is unreasonable,
there will not be a nearby minimum and hence we call such a constraint “unproductive” (since it does
not lead to a productive reaction). Figure 1 illustrates this situation schematically. The main result
reported here is a means of identifying unproductive AFIR attractors (purple X’s in Figure 1) from
productive ones (red dots).

Graph-convolutional neural networks trained on previously reported experimental observations have
recently seen great success as predicting overall reaction transformations[7]. The ability of these
networks to represent the whole molecule and detect the effects of remote functional groups on local
reactivity prompted our investigation of these networks for pruning the search space during reaction
exploration. A graph-convolutional classifier which used the molecular connectivity, atom identities,
and basic hybridization information to generate the convolution along with the atoms being pushed
together was trained on data obtained from previous AFIR trajectories, where the classification was
whether or not a reaction (of any type) took place. As the goal of a reaction network is to determine
an unbiased understanding of the available reaction space for an ensemble, we do not distinguish
what reaction is occurring; we seek all reactions.

For a concrete chemical example, consider the molecules highlighted in blue in Figure 2. All possible
pairs of atoms in the two molecules could be considered as possible reactions. However, the vast
majority of these will not lead to a productive reaction. Since the quantum mechanical optimizations
to determine if such a reaction is reasonable or not is fairly expensive, we wish to minimize such
calculations. The reaction proposals marked in red could be instantly dismissed by an expert chemist
as unlikely to be productive. We use a graph-convolutional neural network to be able to make the
same sorts of predictions, dramatically reducing the AFIR algorithm’s cost.
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Figure 2: Examples of AFIR trajectories in terms of real chemistry. An expert chemist could quickly
dismiss the reaction proposals marked with an X; the neural network classifier can as well.

(a) Hydroformylation reaction network with cat-
alytic cycle highlighted in red.

(b) Reactions of dipeptides with water in acidic
conditions.

Figure 3: Reaction networks generated with AFIR scheme

In order to obtain an active learning method, a committee of five networks is used to determine
uncertainty in the predicted classification. If the uncertainty is deemed to be too high, the AFIR
trajectory is performed and the resulting data is added to the training set of the model.

3 Results

The graph-convolutional neural network was trained on 6785 AFIR trajectories and obtained ROC
AUC scores of about 0.75 on out-of-sample data. Using the network in conjunction with the AFIR
scheme to build reaction networks, thresholds were selected so that about 1% of AFIR trajectories
which were predicted to produce a non-trivial result (i.e. a reaction) did not actually result in a reaction
(the false positive rate), while conversely about 4% of AFIR trajectories which were predicted to
not produce a reaction actually did (the false negative rate). The remaining 95% of data points were
correctly classified. This is extremely high enrichment over not using the neural network to screen
(i.e. considering all pairs of non-bonded atoms) for potential reactivity. In such cases without the
network, upwards of 90% of AFIR trajectories produce no result and are wasted compute time.

This neural network/AFIR scheme was able to predict the mechanisms of a number of complex organic
and inorganic transformations without interference from users, including peptide hydrolysis in acidic
and neutral conditions and the Co-catalyzed hydroformylation of ethylene. Further investigations are
currently in progress, as well as considerable augmentation of the training data set.
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