
Learning Dynamical Systems from Partial
Observations

Ibrahim Ayed∗
ibrahim.ayed@lip6.fr

Sorbonne Université, UMR 7606, LIP6
Theresis lab, Thales

Emmanuel de Bézenac∗
emmanuel.de-bezenac@lip6.fr

Sorbonne Université, UMR 7606, LIP6

Arthur Pajot
Sorbonne Université, UMR 7606, LIP6

Julien Brajard
Sorbonne Université, UMR 7159, LOCEAN

Nansen Environmental and Remote Sensing Center (NERSC)

Patrick Gallinari
Sorbonne Université, UMR 7606, LIP6

Criteo AI Lab

In this work, we consider parametrized evolution equations of the form :
dXt

dt
= Fθ(Xt) (1)

Many phenomena studied in physics, computer vision, biology (Mitchell and Schaeffer (2003)),
geoscience (Ferguson (1988)), finance (Y. Achdou and Lelievre (2007)), etc... obey a general equation
of this form. Here the goal is to learn a θ such that the solution fits measurements. However, there
is a major drawback to this approach: for most real-world applications, the variables describing the
system are not fully visible to external sensors (Carrassi et al. (2018)), e.g. when studying ocean’s
circulation, variables contained in the system’s state such as surface temperature or salinity are
observable via satellite imaging, while others subsurface variables are substantially more difficult or
costly to observe. In this case, the state is said to be partially observable.

We tackle this problem of learning spatio-temporal dynamical systems where the evolution equations
are unknown, and only partial observations are available, using neural networks to model their
evolution. This approach yields improvements on the forecast of observations, compared against state
of the art deep learning based methods for spatio-temporal data, when used to predict observations
derived from simulations of the Navier-Stokes equation.

To summarize, our main contributions are the following:

– We propose a general model, parametrized with neural networks, which learns a state
representation and its dynamics given partial observations.

– We show that the states produced in the partially observable case by the model aren’t
necessarily interpretable and propose two settings where we prescribe the hidden dynamics
to match the canonical states2.

– We present experiments on the Navier-Stokes equations exploring the properties of our
model in each setting.

∗Equal contribution
2Which we define here as the representation used by practitioners, generally formed with physically mean-

ingful variables.

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.

1 General Approach

1.1 General model

A natural optimization problem would be the following:

minimize
θ

EY ∈Dataset
[
J (Y,H(X))

]
subject to

dXt

dt
= Fθ(Xt),

X0 = gθ(Y
−k
0)

(2)

We take:

J (Y, Ỹ) =

T∑
t=0

‖Yt − Ỹt‖2 (3)

The dataset is a set of the form {(Y (i)
−k+1, ..., Y

(i)
0 , ..., Y

(i)
T)}, where all observations Y (i) are supposed

to be generated through the same underlying dynamical system, with different initial conditions. H
models the loss of information between the state X defining the dynamics of the studied system and
the observations Y which can be cheaply and directly measured3.

1.2 Learning An Ill-Posed Problem

We now consider the more specific situation where we take Y and X to be vector-valued spatio-
temporal fields with values respectively in Rl and Rd where l ≤ d. This last operator is taken as a
linear projection. Without loss of generality, we can thus consider Y to be constituted by the first l
components of X and we have the result:
Proposition 1. If4 l < d and the parametric families are universal approximators, for any ε, the
optimization problem equation 2 admits an infinite number of solutions with a loss lower than ε
arbitrarily close from non-canonical state representations.

This result shows in particular that solving the optimization problem defining our model doesn’t
necessarily give a state representation corresponding to the desired canonical one. In particular,
while observations may still be accurately forecast, if the problem is correctly solved, there can be a
problem with the interpretation of the other hidden components of the state. In the following, we try
to mitigate this issue by considering two possible settings.

1.3 Setting 1: Jointly Trained (JT) States

In this setting, we choose to fix the architectures of gθ and Fθ and optimize without additional
information. The dataset used here is thus only composed of observations and is of the form
{(Y (i)
−k+1, ..., Y

(i)
0 , ..., Y

(i)
T)}. In the following, the states learned in this setting will be referred to as

Jointly Trained states.

The following proposition tells us that the non-structured JT states can be interpreted:
Proposition 2. There exists an invertible function g which transforms jointly learned states into
canonical states.

1.4 Setting 2: Feeding in a Canonical Initial Condition

A weak way to impose some structure over the learnt states is to remove g and prescribe an
initial state with canonical structure5 Thus, in this setting, the dataset used here is of the form

3In practice, this can for example be the case in satellite imaging between surface measurements and
inaccessible in-depth variables. In other cases, some variables are simply more difficult to measure and therefore
can’t be available in sufficient quantities for training.

4The hypothesis made here correspond to those of our experiments but it is possible to obtain a more general
version at the cost of a lengthier proof.

5This comes at a cost: The algorithm now has to take a full state as input for each sequence of observations.

2

· · ·
<latexit sha1_base64="CdEbsgyNbEXsOsLVM6abyvl4HKE=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YuVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPi5Jx</latexit>

Ground Truth

Our model, Setting 2

Our model, Setting 1

Baseline: PKnl

Baseline: PredRNN

…

…

…

…

…

Figure 1: Forecasting the Navier Stokes equations 30 time-steps ahead with different models, starting
from a given initial condition. More samples from our model are given in section C of the appendix.

{X(i)
0 , Y

(i)
1 , ..., Y

(i)
T)} and the number of needed states is T times less than the number of observa-

tions.

There still are infinitely many possible state representations which produce accurate forecasts for
observations, even when X0 is fed as an input to the model. However, by correctly parametrising F ,
we can hope to conserve the structure of X0 throughout the forecasts.

2 Experiments

In this section, we present experiments conducted on simulations of the Navier-Stokes equation. Note
that we have also evaluated our model on state-of-the-art simulations of ocean circulation. For clarity,
the results have been deferred to the appendix, Section B.

2.1 Forecasting Observations

Table 1: Relative MSE 1
T

1
|Ω|

∑T
k=1

∑
x∈Ω

‖H(Xk(x))−Yk(x)‖2
‖Yk(x)‖2

for our model and two different baselines,
at different temporal horizons on the Navier Stokes equations.

MODEL T = 5 T = 10 T = 50

OURS 0.152 0.243 0.650
PKNI DE BÉZENAC, PAJOT, AND GALLINARI (2018) 0.194 0.221 0.752
PRNN (WANG ET AL. (2018)) 0.170 0.227 0.719

Figure 1 shows a sample of the predictions of our system over the test set for the Navier Stokes
equations. The good results it shows are confirmed by table 1. Our model is able to predict
observations up to a long forecasting horizon, which means that it has managed to learn the dynamical
system. Note that the initial states used at test time have never been seen at training time which
means that the optimization problem was solved correctly without over-fitting. The cost function
and the supervision were only defined at the level of observations in accordance with our setting. An
interesting remark is to observe that the jointly trained model is slightly less accurate than the one
given X0, which makes sense as this last algorithm is given a few additional full states when JT isn’t
given any. Samples for long term forecasts of our model can be seen in the appendix for the Navier
Stokes equations.

3

Figure 2: Example of a sequence of hidden states transformed by the calculated conjugacy.

2.2 Restructuring Jointly Trained States

Proposition 2 shows that there must exist a way to transform JT states into canonical ones, which
would make them more palatable and easier to interpret. In order to confirm this theoretical result
empirically, we solved the regression problem between JT and canonical states6.

Figure 2 shows an example of the output from the conjugacy yielded by this transformation we
learned: It allows us to transform the non-structured hidden states of the jointly trained model into
interpretable states corresponding to the canonical representation. From a quantitative point of view,
after 5 predictions, the average cosine similarity over the whole test set goes from 0.192 in the jointly
trained representation to 0.582 when transformed. While this result is far from perfect7, it still shows
promise and demonstrates that this approach could be applied in many cases.

2.3 Imposing the Initial Condition Prescribes the Hidden Dynamics

Figure 1 shows that in setting 2, when we add a full initial state, our model is able to forecast not
only observations but also the dynamics of the hidden components of the state. This is a surprising
result: Even though this model gets additional structured information at the input, there are still an
infinite number of ways to transport that information through time-steps and to store it into the state
representation.

Table 2: Cosine similarity 1
T

∑T
k=1

1
|Ω|

∑
x∈Ω

〈u(x),v(x)〉
‖u(x)‖‖v(x)‖ scores for our models and another baseline,

at different temporal horizons on the Navier Stokes equations.

MODEL T = 5 T = 10 T = 50

OURS (WITH INITIAL STATE AS INPUT) 0.798 0.679 0.483
PKNI 0.243 0.207 0.098

Table 3: Ablation study for our model, at different temporal horizons on the Navier Stokes equations

MODEL T=5 T=10 T=50

MSE COSINE MSE COSINE MSE COSINE
OURS 0.118 0.798 0.180 0.679 0.628 0.483
RESNET 0.288 0.604 0.391 0.333 0.73 0.032
UNET 0.659 0.069 0.692 0.028 0.84 0.023
RESNET NO SKIP 0.615 0.162 0.71 0.060 0.897 -0.04

Table 3 shows an ablation study conducted on our model with other possible parametrizations, all
with roughly the same number of parameters as our model:

• At least in the case of the Navier-Stokes equations, our model, with a simple solver for an
equation parametrized through a residual network, allows to forecast unsupervisedly the
dynamics of the hidden dynamics of the state;

• The fact that a solver is used, instead of a direct regression model, appears to be very
important, as comparisons to other standard powerful architectures show.

However, this still doesn’t explain why this works for the hidden components, as the problem is
ill-posed nonetheless. We hypothesize that the architecture of the network used to parametrize the

6With a small number of canonical states being provided.
7In particular, the choice of the regression algorithm isn’t obvious and the size of the needed dataset will

depend on this choice as well as on the desired accuracy, as with any regression problem.

4

equation is biased towards preservation of the input code, which happens to be that of the canonical
state because X0 is fed into it8

3 Conclusion

We present in this paper a general data-driven model for space-time processes when the state is only
partially observable. We show that partial observability introduces ill-posedness in the determination
of an interpretable state representation then propose two methods to solve this issue: This allows
to demonstrate that non-structured states can be interpreted when correctly transformed and that
the model, when fed with a structured interpretable state with a well parametrized evolution term,
can forecast unsupervisedly the hidden dynamics of the state. The theoretical analysis is confirmed
through experiments on raw simulations of the Navier-Stokes equations and comparisons with two
competitive baselines.

8A similar kind of phenomenon is also empirically observed in the unsupervised domain translation field
with the success of the CycleGAN model which is explored from this point of view in de Bézenac, Ayed, and
Gallinari (2019).

5

References
Carrassi, A.; Bocquet, M.; Bertino, L.; and Evensen, G. 2018. Data assimilation in the geosciences:

An overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate
Change 9(5):e535.

de Bézenac, E.; Ayed, I.; and Gallinari, P. 2019. Optimal unsupervised domain translation. CoRR
abs/1906.01292.

de Bézenac, E.; Pajot, A.; and Gallinari, P. 2018. Deep learning for physical processes: Incorporating
prior scientific knowledge. In ICLR.

Ferguson, J. 1988. Geological applications of differential equations. In Springer., ed., Mathematics
in Geology. chapter 8, 216–237.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, 770–778.

Madec, G. 2008. NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace
(IPSL), France, No 27, ISSN No 1288-1619.

Mitchell, C. C., and Schaeffer, D. G. 2003. A two-current model for the dynamics of cardiac
membrane. Bulletin of mathematical biology 65(5):767–793.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga,
L.; and Lerer, A. 2017. Automatic differentiation in pytorch.

Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Convolutional networks for biomedical
image segmentation. CoRR abs/1505.04597.

Wang, Y.; Gao, Z.; Long, M.; Wang, J.; and Yu, P. S. 2018. Predrnn++: Towards a resolution of the
deep-in-time dilemma in spatiotemporal predictive learning.

Y. Achdou, O. B., and Lelievre, T. 2007. Partial differential equations in finance.

6

A Practical details

A.1 Training and Inference Algorithms

The formulation above closely ressembles control problems where a given controllable dynamical
system is constrained to optimize a certain objective, our aim here is different as our goal is to find
the dynamical system fitting a certain set of constraints, here provided through the observations Y . In
practice, the optimization problem defined here can be solved using gradient descent methods. There
are many methods to calculate the gradient, we used here an explicit Euler solver which allowed us to
use backpropagation in order to compute the gradient. Fθ and gθ can be parameterized as a neural
network or by another parametric family, the only constraint being that it is differentiable almost
everywhere with respect to θ, while we also have to suppose thatH is differentiable.

A natural training algorithm would then be algorithm 1.

Algorithm 1 Training Procedure

Input: Training samples {(Y −k), Y+l}.
Guess initial parameters θ
while not converged do

Randomly select sample sequence {(Y −k), Y +l}
X0 ← gθ(Y−k)
Solve Forward dXt

dt = Fθ(Xt), X(0) = X0, t ∈ [0, l]

Solve Backward
dλt
dt

= Atλt +Bt, λl = 0, t ∈ [0, l]

Compute gradient ∂J∂θ (Xθ)
Update θ in the steepest descent direction

end while
Output: Learned parameters θ.

For inference, the parameters being learnt and fixed, we simply calculate X0 = gθ(Y
−k) then use it

as an initial condition to solve the equation parametrized by Fθ which gives us Xt for any t.

A.2 The Dataset

For those experiments, we have worked with the incompressible Navier-Stokes equations. We
have taken the observations to be the density of the fluid while the hidden components are the
two-dimensional velocity field.

We have produced 600 separate simulations with independently generated initial conditions, the
simulations have then been subsampled in time to produce a time-step of 2.5s and a total length of 50
time-steps per simulation. We have taken 300 from those simulations to construct the training set,
200 for validation and 100 for test. In particular, this means that the sequences used in the test results
we present and analyze below are produced by initial conditions the model has never seen. For
both settings, this gives us a total of 15000 observations for the training set and 10000 for the test
set. In setting 1, for the restructuring of JT states experiment, we used 500 additional full states to
train the transformation. In setting 2, we use an additional 2500 full states for training and 1666 for
testing.

As stated before, one also has to choose a training horizon T , to construct the used dataset of the form
{(Y (i)
−k+1, ..., Y

(i)
0 , ..., Y

(i)
T)} for setting 1 and {X(i)

0 , Y
(i)
1 , ..., Y

(i)
T)} for setting 2. We have treated

T as a hyperparameter of the model and have chosen it to be equal to 6. An important observation
is that the higher T , the more memory demanding the training will be and the more carefully the
gradient descent has to be done, especially at the first steps (by tuning the learning rate, scheduled
sampling,...). However, we have observed that models with higher horizons tend to generalize better
and forecast more accurately for farther time horizons, which makes sense as it makes the model take
into account long term effects.

An other important misconception to avoid is to confuse the training horizon T with the inference
horizons at test time: For example, a model which is trained for sequences with T = 6 can be very
accurate for longer time horizons as we show in the results below.

7

A.3 Implementation

In practice, the cost functional J is estimated on a minibatch of sequences from the dataset and
optimized using stochastic gradient descent. Throughout all the experiments, Fθ is a standard
residual network He et al. (2016), with 2 downsampling layers, 6 residual blocks, and bilinear
up-convolutions instead of transposed convolutions. In the experiments for setting 1, we parametrize
gθ as a Unet Ronneberger, Fischer, and Brox (2015). To discretize the forward equation equation ??
in time, we use a simple Euler scheme. Note that the discretization step-size may differ from the
time interval between consecutive observations; in our case, we apply 3 Euler steps between two
observations, i.e. δt = 1

3 . For the spatial discretization, we use the standard grid discretization
induced by the dataset. The weights of the residual network θ are initialized using an orthogonal
initialization. Our model is trained using a exponential scheduled sampling scheme with exponential
decay, using the Adam optimizer, with a learning rate set to 1 × 10−5. We use the Pytorch deep
learning library Paszke et al. (2017).

A.4 Baselines and Metrics

We compare our models to two different baselines:

PKnI This is a physics-informed deep learning model de Bézenac, Pajot, and Gallinari (2018),
where prior physical knowledge is integrated: it uses an advection-diffusion equation to
link the velocity with the observed temperatures, and uses a neural network to estimate the
velocities.

PRNN Wang et al. (2018) This is a heavy-weight, state of the art model used for video prediction
tasks. It is based on a Spatiotemporal Convolutional LSTM that models spatial deformations
and temporal variations simultaneously.

We use a renormalized relative squared error as a metric for observations:

1

K

1

|Ω|
K∑
k=1

∑
x∈Ω

‖H(Xk(x))− Yk(x)‖2
‖Yk(x)‖2

(4)

To evaluate the quality of the hidden states, we use cosine similarity between the model’s hidden state
and the true hidden state of the system9:

1

K

K∑
k=1

1

|Ω|
∑
x∈Ω

〈
u(x), v(x)

〉∥∥u(x)
∥∥ ∥∥v(x)

∥∥ (5)

For the velocity vector field representation, color represents the angle, and the intensity the magnitude
of the associated vectors.

B Taking our model to the limit: Forecasting ocean circulation dynamics

In this section, we use our model to study Sea Surface Temperatures dynamics as modeled by the
Glorys2v4 simulations. We quickly describe this complex realistic state-of-the-art simulation of
ocean circulation then give the declination of our model we used to learn it and present the results as
compared to standard baselines.

B.1 Glorys2v4

The Glorys2v4 product is a reanalysis of the global Ocean (and the Sea Ice, not considered in
this work). The numerical ocean model is NEMOv3.1 Madec (2008) constrained by partial real
observations of Temperature, Salinity and Sea Level. Oceanic output variables of this product are
daily means of Temperature, Salinity, Currents, Sea Surface Height at a resolution of 1/4 degree
horizontal resolution.

9The cosine similarity is relevant for the comparison with PKnI: the norm of its hidden state may not
correspond to the ground truth norm.

8

The NEMO model describes the ocean by the primitive equations (Navier-Stokes equations together
with an equation of states).

Let (i, j,k) the 3D basis vectors, U the vector velocity, U = Uh + wk (the subscript h denotes the
local horizontal vector, i.e. over the (i, j) plane), T the potential temperature, S the salinity, ρ the
in situ density. The vector invariant form of the primitive equations in the (i, j,k) vector system
provides the following six equations (namely the momentum balance, the hydrostatic equilibrium,
the incompressibility equation, the heat and salt conservation equations and an equation of state):

∂Uh

∂t
= −

[
(U.∇)U

]
h

− fk×Uh −
1

ρ0
∇hp+DU + FU

∂p

∂z
= −ρg

∇.U = 0

∂T

∂t
= −∇.(TU) +DT + FT

∂S

∂t
= −∇.(SU) +DS + FS

ρ = ρ(T, S, p)

where ρ is the in situ density given by the equation of the state B.1, ρ0 is a reference density, p
the pressure, f = 2Ω.k is the Coriolis acceleration. DU , DT and DS are the parameterizations of
small-scale physics for momentum, temperature and salinity, and FU , FT and FS surface forcing
terms.

As in subsection ??, the divergence-free constraint over can be enforced through the Leray operator.
Moreover, ρ is a function of other state variables so that the state can be written as:

X =


U
p
S
T

 and H(X) = T .

where T is the daily mean temperature derived from the instantaneous potential temperature T in the
model.

B.2 Modeling and Results

This dataset is much more challenging and represents a leap from the fully simulated ones presented
before. One reason is obviously the high dimensionality of the system and the absence of a full state
as initial input to our system as we only have a proxy over the velocity field. A second one is the
fact that we only work over sequences from the same ocean zone while the model functions within
a larger area. This makes the dynamics for a single zone non-stationary as boundary conditions
are constantly shifting, thus violating an important assumption of our method and making it almost
impossible to make long term forecasts with a reasonable number of observations. All we can hope
for is for the dynamics to be locally stationary so that the model can work well for a few steps.

In order to take into account the observations made above regarding this system, especially the fact
that the initial temperatures T0 (in this case, since the we observe the temperatures, Y0 = T0) and the
proxy of the velocity field w̃0 provided as initial input is insufficient to represent the full state, we
take gθ in equation equation 2 to be:

gθ = Eθ(Y
(−L), w̃0) +

Y0

w̆0

0

 (6)

where Eθ is an encoder neural network. Using Eθ allows us to encode available information
from the observations Y (−L) which is not contained in w̆0 nor in T0. For Eθ, we use the UNet
architecture Ronneberger, Fischer, and Brox (2015). This variant, noted Ours, with Estimation,

9

Ground Truth

Ours

Ours, with Estimation

Baseline: PKnl

Baseline: PredRNN

Figure 3: Forecasting Sea Surface Temperatures 10 time-steps ahead with different models, starting
from a given initial condition.

shows the potential of our method to be used in settings of varying difficulties and improves on our
model, noted Ours, in forecasting the hidden components of the state.

Figure 3 and table 4 show that our models are accurate both for observations and hidden states.
However, there is a clear drop in performance when compared to the experiments in the Navier-Stokes
dataset, even at horizon 10. Still, those experiments show that our model is quite robust even in
non-stationary settings.

Table 4: Relative MSE and cosine similarity scores for our models and different baselines, at different
temporal horizons on the Glorys2v4 dataset

MODEL H=5 H=10

MSE COSINE MSE COSINE
OURS 0.306 0.671 0.402 0.589
OURS, EST. 0.364 0.718 0.490 0.670
PKNI 0.411 0.448 0.494 0.368
PRNN 0.423 XX 0.546 XX

10

C Additional Forecasts

Figure 4: Forecasting the Navier Stokes equations, starting from a given initial condition (not shown
here). We forecast 42 time-steps ahead (rows 0, 1(mod 4)) and compare results with the ground truth
simulation (rows 2, 3(mod 4)).

Figure 5: Forecasting the Navier Stokes equations, starting from a given initial condition (not shown
here). We forecast 42 time-steps ahead (rows 0, 1(mod 4)) and compare results with the ground truth
simulation (rows 2, 3(mod 4)).

11

Figure 6: Forecasting Glorys2v4 10 time-steps ahead, starting from a given initial condition (not
shown here). Top two rows: ground truth, bottom two rows: model forecasts.

Figure 7: Forecasting Glorys2v4 10 time-steps ahead, starting from a given initial condition (not
shown here). Top two rows: ground truth, bottom two rows: model forecasts.

Figure 8: Forecasting Glorys2v4 10 time-steps ahead with estimation step, starting from a given
initial condition (not shown here). Top two rows: ground truth, bottom two rows: model forecasts.

Figure 9: Forecasting Glorys2v4 10 time-steps ahead with estimation step, starting from a given
initial condition (not shown here). Top two rows: ground truth, bottom two rows: model forecasts.

12

	General Approach
	General model
	Learning An Ill-Posed Problem
	Setting 1: Jointly Trained (JT) States
	Setting 2: Feeding in a Canonical Initial Condition

	Experiments
	Forecasting Observations
	Restructuring Jointly Trained States
	Imposing the Initial Condition Prescribes the Hidden Dynamics

	Conclusion
	Practical details
	Training and Inference Algorithms
	The Dataset
	Implementation
	Baselines and Metrics

	Taking our model to the limit: Forecasting ocean circulation dynamics
	Glorys2v4
	Modeling and Results

	Additional Forecasts

