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Abstract

The electronic Schrodinger equation describes fundamental properties of
molecules and materials, but cannot be solved exactly for larger systems than the
hydrogen atom. Quantum Monte Carlo is a high-accuracy approximation method,
in principle only limited by the flexibility of the used wave-function ansatz. Here
we develop the deep-learning real-space wave-function ansatz PauliNet. PauliNet
has the Hartree—Fock solution built in as a baseline, incorporates the physics
of valid wave functions, and is trained using variational quantum Monte Carlo
(VMCO). PauliNet achieves higher accuracy than comparable state-of-the-art VMC
for atoms, diatomic molecules, and a strongly-correlated hydrogen chain.

1 Introduction

A cornerstone of predicting the physical and chemical properties of a given molecule or material
defined by Hamiltonian operator, H is the solution of the corresponding electronic Schrédinger

equation for the unknown electronic wave function, ¢ (r1, ..., ry), and electronic energy, F,
flw(rl,...,r]\r):Ew(rl,...,rN) (1)
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Here, (rq,...,ry) = r € R3N are the spatial coordinates of N electrons, and (Z;, Ry) are the

charges and coordinates of M atomic nuclei. In addition to spatial coordinates, each electrons has a
s; € {1, ]}, and the solution of Eq. (1-2) must obey antisymmetry with respect to exchanging equal-
spin electrons. The antisymmetry constraint makes solving the electronic Schrodinger equation to
a fixed accuracy level NP-hard, i.e. it scales exponentially with N [ , ]. An
exact solution of Eq. (1-2) is only available for N = M = 1, the hydrogen atom, but quantum
chemistry has developed numerous approximation methods with varying degrees of accuracy and
computational efficiency [ , 1.

Many quantum chemistry methods build on the variational principle, which states that the solution
of (1) with the lowest energy, ¥, Ey, can be obtained by minimizing the energy expectation value
over all antisymmetric wave functions. Thus, minimizing over a trial subset of all wave functions,
called an ansatz, parametrized by 8, gives an upper bound to the true ground-state energy Fj:

Ey = mwinE[z/;] <minEfe),  B[¢] = / dr o (r) Hip(r) (3)
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Figure 1: Schematic of the PauliNet neural network structure and information flow.

In variational quantum Monte Carlo (VMC) [ s s s R
, ], the energy integral is written as an expected value of the local energy, Eio.[¢](r) =

Hu)(r) /1 (r), over the probability distribution |2 (r)],
B[] = Evn g2 [Broc[t](r)] )

The primary motivation to improve existing variational wave-function ansatzes is that although there
are several extensions of VMC that increase its accuracy, such as the diffusion quantum Monte Carlo
(DMC), improving the actual ansatz is the only way to improve the nodal surface of a wave function,
which is the hyperplane of electronic coordinates on which the wave function changes sign, and
whose accuracy sets fundamental limitation to the accuracy of all quantum Monte Carlo (QMC)
techniques. The existing wave-function ansatzes are partially motivated by the physics of electrons,
partially by trial-and-error experience. Here, we demonstrate that ansatzes that incorporate the right
physics while using DNNSs in place of the existing ad-hoc functional forms can outperform state-of-
the-art variational ansatzes of comparable types.

2 Method

2.1 Neural wave function PauliNet incorporating the physics of electrons

Our proposed PauliNet wave function is of the Slater—Jastrow—backflow type, where both the Jastrow
factor J and the backflow f are represented by DNNs with trainable parameters 6 (Figure 1),

Yo (r) = detlp, (r]) fo,u(r)] detlp, (r)) fo,ulr)Je @+ /o) )

Jg and fg(r) are invariant and equivariant DNNS, respectively, with respect to exchanging same-
spin electrons, and ¢,, and v are fixed functions. This ansatz ensures basic physics of electronic
wave functions as follows.

Antisymmetry We fix the first NV} (IV)) electrons to be spin-up (spin-down), The wave function
then must be antisymmetric in the first N4+ and in the last N| = N — N; coordinates.

w(rl, e ’r']TVT’I#VT""l’ .. .,rﬁ,) w(rT,ﬁ) = ¢(r) (6)
w(...,ri,...,rj7...) = —w(...,I‘j7...7I'i,...)7 (7)

As common in quantum chemistry, our ansatz enforces antisymmetry among same-spin electrons
via the matrix determinants in Eq. (5).



Hartree-Fock baseline To ensure a good starting point for the optimization problem, we build
the standard Hartree—Fock (HF) wave function as a baseline into PauliNet. The HF wave function
uses one-electron functions, ¢, (r), called molecular orbitals, and achieved antisymmetry by the
so-called Slater determinant.

Yup(r) := det[i, (r])] ety (7)) ®)
HF is straightforward, computationally efficient, captures much of the basic physics of atoms and
molecules, and makes qualitative reasonable predictions. We take the molecular orbitals directly
from the HF method and keep them fixed in our ansatz (5).

Beyond Hartree—Fock with trainable Jastrow factor and backflow The main limitation to ac-
curacy in HF is that it does not depend on electron-electron distances, and therefore captures no
electron-electron correlation besides the antisymmetric constraint. We combine two established
strategies to improve the HF baseline. First, the HF wave function is multiplied by a nonnegative
totally symmetric function e’ o(r) with the so-called Jastrow factor .J [ , ]. This
modification can build complex electron correlations into the wave function, but cannot modify the
nodal surface inherited from HF. Second, we can generalize the molecular orbitals to all-electron
functions as long as we retain equivariance (and thus the determinant antisymmetry) with respect to
exchanging same-spin electrons,

Pu(ri) = @ui(r), Poui(r) = ¢ui(Pr) €))
where P is the exchange operator for same-spin electrons. This approach is called the backflow, and

unlike the Jastrow factor it can modify the nodal surface of the HF wave function [ ,
1. We achieve backflow by multiplying the orbitals ¢,, with trainable DNN functions fg ..

Cusp conditions Any ground-state electronic wave function obeys exact asymptotic behavior de-
fined by the cusp conditions as electrons approach each other and the nuclei [ , 1,
1 9o _ g Lo :{ 5i = 5
wo 8|I’i — R[‘ ri=R; ’ ¢0 8|I‘l — I‘j| ri=r; 2 Si 7’5 Sj
PauliNet ensures the nuclear cusp conditions via the molecular orbitals ¢, (r;) as described in
[ ]. The electronic cusp conditions are enforced by a fixed function y(r). To preserve the

cusp conditions built into ¢,, and +, the Jastrow factor and backflow DNNs must be cuspless, which
we ensured by construction of the DNN architecture (see below).

Ve (0) ey =0 Ve, gy =0 (11)

(10)

==

Neural network architecture The requirements of invariance and equivariance with respect to
permutation of particles, and the fact that particle interactions are a function of their distances are
closely related with the aim of constructing DNNSs that learn potential energy functions. Therefore,
we adapt the graph-convolutional neural network SchNet [ , ], as follows: (i) The
iterated feature vectors xl(-”) of the graph represent electrons, not atoms as in SchNet, and we only
distinguish two initial embeddings: spin-up and spin-down. (ii) The graph messages received by
the electron feature vectors at each iteration are split into three channels: same-spin electrons, op-
posite-spin electrons, and nuclei. (iii) Each nucleus is represented by a trainable embedding Y 7,
shared across all iterations of the graph network. (iv) Two new trainable functions 79 and kg of the
final electron feature vectors return the values of the Jastrow factor and the backflow, respectively.
As feature vectors xgn) are equivariant with respect to exchange at each iteration, so are the backflow
vectors f;. (v) The distance features e are constructed to be cuspless to maintain the cusp behavior
encoded in ¢, and 7.

Training To generate samples of r from the wave-function distribution |12 (r)|, needed to evaluate
the expected value in (4), we use a standard Langevin Monte Carlo approach [ , 1.
To optimize the parameters 6 in the Jastrow and backflow neural networks, we use Adam [

, ] with the variational energy (4) as the loss function. The stochastic loss gradient over
a batch of samples is computed with a formula that exploits the Hermitian nature of the Hamiltonian
in(3)[ , ]. This formulation only requires second derivatives of the wave function
(for the Laplace operator), whereas direct differentiation would require third derivatives.

E(O) = Eer,&‘ [E]oc(r; 0)], Vgﬁ(@) = 2]E,.N|¢/2| [(E]OC(I‘; 9) - E(O))V@ hl‘l/}g” (12)



Table 1: Ground-state energies of five test systems obtained by four different methods.
ES/Eh (% Ecorr)

system VMC DMC DeepWF PauliNet
H, _ _ —1.1738  98.4% —1.17437(6) 99.7%
LiH —8.0635" 91.5%  —8.0703" 99.7% —7.8732 ° —8.0690(3)  98.1%
Be —14.6311Y 61.6% —14.6572% 89.2% —14.6141  43.6% —14.6546(7)  86.5%
B —24.6056° 60.0% —24.6398° 88.3% —24.2124 ° —24.634(2) 83.5%

%o —5.5685  63.8% —5.655(2) 96.0%

*Reference exact ground-state and HF energies are taken from [ 1,
[2000], [2007], [2017], [2003]. ®For LiH and B, DeepWF

does not reach the accuracy of the HF method.
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Figure 2: Electronic energy as a function of distance between atoms in H, (a) and H;( (b).

3 Results and Conclusions

In this work, we test only the Jastrow part of our architecture and turn the backflow part off, which
enables us to directly compare against fixed-node DMC calculations. We use the same set of atoms
and small molecules that were used to test DeepWF in [ , ] (Table 1).

PauliNet outperforms state-of-the-art Jastrow factors A common way to compare the accuracy
of ab-initio methods in quantum chemistry is via the fraction of correlation energy captured, de-
fined as the difference between the exact ground-state energy and that of the HF method. Whereas
DeepWF does not even reach the accuracy of the HF method for LiH and B, our PauliNet gives
variational energies for atoms and diatomics that are better than those from state-of-the-art VMC
calculations, and are only outperformed by the fixed-node limits of DMC calculations by several
percents of the correlation energy. It took several hundreds of iterations to converge the energy to
the reported values, corresponding to tens of minutes on a single GTX1080Ti GPU.

PauliNet captures strong correlation Unlike the atoms and diatomics, the linear hydrogen chain
Hy exhibits strong correlation, which describes a situation where the single-determinant description
of the HF method is qualitatively insufficient [ s ]. This is a hard test for the ansatz,
because the Jastrow factor needs to be a complicated many-body function under such circumstances
[ s ]. Already Hs exhibits strong correlation when the two atoms are
dissociated, but our Jastrow factor is able to cover the transition from dynamic to strong correlation
smoothly (Figure 2a). For H;(, we recover 96% (80%) of the correlation energy in the equilibrium
(stretched) geometry (Figure 2b). The supposedly harder problem of learning the Jastrow factor for
a strongly-correlated system leads to a longer optimization time, here on the order of hours.

Conclusions DNN representations of real-space electronic wave functions can outperform state-
of-the-art variational ansatzes for simple and strongly-correlated systems, as a result of the increased

flexibility in the functional form. In parallel, [ , ] developed a deep-learning archi-
tecture that exhibits higher accuracy, but also much greater computational costs. Combining the
physical constraints built into PauliNet with the improved optimizer of [ , ] has the

potential to combine their advantages. In future work, we plan to explore numerical performance of
the neural backflow in PauliNet, which in principle removes any inherent limitations of the flexibil-
ity of our ansatz. We hope that introducing DNNs to quantum Monte Carlo opens the possibility to
exploit the striking advances in deep learning for scientific discovery.
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