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Abstract

Predicting features of complex, large-scale quantum systems is essential to the
characterization and engineering of quantum architectures. The state space of quan-
tum systems is enormous and an exponential number of quantum measurements
are required to learn a full description. To overcome this exponential bottleneck,
we present an efficient approach for learning a classical model, called the classical
shadow, of a quantum system from log(M) measurements only. This number is
completely independent of the ambient dimension. Classical shadows can later
be used to accurately predict any collection of M linear features. We equip this
prediction procedure with rigorous convergence guarantees that saturate funda-
mental lower bounds from information theory. Numerical experiments support
our theoretical findings over a wide range of problem sizes (quantum state space
dimensions ranging from 22 to 2162) and highlight advantages compared to existing
machine learning approaches.

1 Introduction

Learning and characterizing large quantum systems is crucial for the advancement of quantum
technologies. The potential applicability of such technologies ranges from quantum sensors based
on entangled particles [4, 21] that may improve the detection of gravitational waves to quantum
computing devices that solve hard computational problems [18] and may even simulate quantum
field theories [10, 15]. Recent, unprecedented advances in the size of controllable quantum systems
[14] have pushed traditional techniques for characterizing quantum systems to the limit of their
capabilities. These techniques learn a complete description of the quantum system – a procedure
known as quantum state tomography [13, 8]. Because an n-qubit quantum system lives in a Hilbert
space with dimension 2n (curse of dimensionality) and quantum measurements are destructive
(wavefunction collapse), an exponential number of measurement repetitions is required to fully
characterize the system. This is already prohibitive for systems with only a few tens of qubits.

New approaches are required to overcome this fundamental exponential bottleneck. A recent line of
research addresses this problem by adapting modern machine learning techniques. The main idea is
to perform simple quantum measurements on independent copies of the quantum system in question
and train a generative model, such as an auto-regressive recurrent neural network, based on the
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Figure 1: Caricature of classical shadows: In the data acquisition phase, we perform random Clifford
measurements on independent copies of a n-qubit system. The resulting observations serve as a
classical representation of the quantum system – the classical shadow. Classical shadows facilitate
accurate prediction of a large number of linear features using a simple median-of-means protocol.

observed outcomes [19, 3]. This generative model is then used as an approximate (classical) model
of the actual quantum system. Direct access to this model then allows for predicting relevant features.
This approach emphasizes tractability and may be potentially useful in characterizing a large class
of quantum states using near-term tools. Refs. [19, 3] have supported this approach with empirical
evidence. A generative model learned from only a linear number of measurement repetitions (rather
than exponential) is capable of accurately predicting many relevant features. In quantum mechanics,
interesting features are typically linear functions in the underlying density matrix1 ρ:

oi(ρ) = trace(Oiρ) 1 ≤ i ≤M. (1)

The fidelity with a pure target state, entanglement witnesses, potential future measurement statistics
and expectation values of physical observables are but a few prominent examples. However, like
many machine learning approaches, these existing methods are not supported by rigorous guarantees
and concrete predictions may not be trustworthy (this will actually be illustrated in our numerical
experiments). A more rigorous line of work by Aaronson et al. [1, 2] proves that one can accurately
predict many linear quantum features from very few independent copies of the underling quantum
system. This approach, however, is extremely (quantum) hardware demanding and requires direct
access to an extensive quantum memory.

In this work, we strive for a synthesis of these existing, yet complementary, approaches. In particular,
we address the following question: can we efficiently learn a classical representation of a quantum
state from few tractable measurements, such that the representation can later be used to predict
quantum features with a rigorous guarantee? Focusing on data obtained from independent quan-
tum measurement repetitions, we propose an optimal learning procedure that guarantees accurate
prediction based on very few state copies and measurements.

2 Main Results

Theorem 1. There exists a procedure that guarantees the following. Given B, ε > 0, The procedure
learns a classical representation of an unknown quantum state ρ from independent measurements
on N = O(B log(M)/ε2) copies of ρ. Subsequently, given any matrix collection O1, . . . , OM with
B ≥ maxi tr(O2

i ), the procedure can use the classical representation to predict each tr(Oiρ) up to
additive error ε (with high probability).

Our proof strategy combines the mindset of machine learning (learning an approximate model that
provides accurate prediction, not the exact underlying model) with recent insights from traditional
quantum state tomography [7] (rigorous convergence guarantees) and the stabilizer formalism [6]

1The quantum state of an n-qubit quantum system is fully characterized by a positive semidefinite matrix ρ
in C2n×2n with unit trace. This object is called the density matrix/operator.
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(efficient implementation). This synthesis allows us to rigorously analyze the prediction behavior of
an approximate model constructed from very few data points.

The actual procedure is simple and constructive, see Figure 1. In the data acquisition phase, we apply
a random quantum circuit, consisting of at most O(n2/ log(n)) Clifford gates, to each copy of the
n-qubit quantum state ρ. Subsequently, we perform a computational basis measurement. Suppose
that we perform N repetitions and let Ui denote the i-th quantum circuit, while b̂i ∈ {0, 1}n is the
corresponding measurement outcome. Then the classical representation of the unknown quantum
state ρ is simply

S(ρ;N) = {U†1 |b̂1〉 , . . . , U†N |b̂N 〉}
which can be stored efficiently using the stabilizer formalism [6]. We call this the classical shadow
of the quantum state ρ. To predict a certain linear feature tr(Oρ), we design a predictor that takes
into account all the data contained in S(ρ;N). This is reminiscent of nonparametric machine
learning algorithms, where the model complexity also scales with the size of the data. Choose
K = O(log(M)), and construct K linear estimators of the underlying density matrix ρ:

ρ̂(k) =
2n + 1

bN/Kc

kbN/Kc∑
i=(k−1)bN/Kc+1

U†i |b̂i〉〈b̂i|Ui − I for 1 ≤ k ≤ K.

Subsequently, we predict a feature tr(Oρ) by computing ô = median
{

tr
(
Oρ̂(1)

)
, . . . , tr

(
Oρ̂(K)

)}
.

Rich geometric properties of the underlying measurement strategy [20, 22, 11] ensure that this
predictor is unbiased with variance bounded by tr(O2). Median of means [12, 9] then asserts rapid
convergence to the true expectation value.

A natural question is whether our procedure can be further improved. This turns out to be impossible.
Fundamental lower bounds from information theory limit the performance of any learning procedure
that is based on independent quantum measurement repetitions. In other words: linear feature
prediction with classical shadows is asymptotically optimal.
Theorem 2. Any procedure based on independent measurement repetitions requires at least
Ω(B log(M)/ε2) copies to guarantee the following. The procedure learns a classical represen-
tation from copies of an unknown quantum state ρ. Subsequently, given any M linear features
O1, . . . , OM with B ≥ maxi tr(O2

i ), the procedure can use the classical representation to predict
tr(Oiρ) up to ε-error with high probability.

3 Numerical Experiments

We have designed classical shadows with tractability in mind. This has allowed us to conduct
numerical simulations with more than 160 qubits, i.e. Hilbert space dimension 2160 ' 1.46 ×
1048. We compare the performance of classical shadows to existing machine learning approaches.
The most recent version of neural network quantum state tomography (NNQST) is a generative
model that is based on an auto-regressive recurrent neural network trained on independent quantum
measurement outcomes (local SIC/tetrahedral POVMs [16]). We consider the task of learning a
classical representations of an unknown quantum state and, subsequently, use this to predict the
fidelity with some pure target state.

GHZ states In [3], the viability of NNQST is demonstrated by considering GHZ states on a varying
number of qubits n. The left-hand side of Figure 2 confirms the linear scaling of NNQST, and the
assertion of Theorem 1: classical shadows of constant size suffice to accurately estimate a constant
number of linear features, regardless of the actual system size. Subsequently, we have also tested the
capability of both approaches to detect potential state preparation errors. More precisely, we consider
a scenario where the quantum source introduces a phase error with probability p ∈ [0, 1]:

ρp = (1− p)|ψ+
GHZ(n)〉〈ψ+

GHZ(n)|+ p|ψ−GHZ(n)〉〈ψ−GHZ(n)|,
where |ψ±GHZ(n)〉 = 1√

2

(
|0〉⊗n ± |1〉⊗n〉

)
.

The right-hand side of Figure 2 highlights that classical shadow prediction accurately tracks the
decay in target fidelity as the error parameter increases. NNQST, in contrast, seems to consistently
overestimate this target fidelity. While existing machine learning approaches are scalable, the
prediction may not be trustworthy.
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Figure 2: Comparison between classical shadows and neural network tomography (NNQST); GHZ
states. We learn a classical representation of an unknown quantum state (in this case, a pure or noisy
GHZ state). We then test if we have correctly identified this state by predicting the fidelity with a
pure GHZ state. NNQST can only estimate classical fidelity (an upper bound on the true quantum
fidelity), but we report quantum fidelity for classical shadows.

Figure 3: Comparison between classical shadow and neural network tomography (NNQST); toric
code. We learn a classical representation of an unknown quantum state (in this case, a toric code
ground state). We then test if we have correctly identified this state. The shaded regions are the
standard deviation of the estimated fidelity over ten runs.

Toric code ground states Toric code ground states are the most prominent example of a topological
quantum error-correcting code [5]. The ground state of the toric code [5] is four-fold degenerate and
we select the superposition of all closed-loop configurations (|ψ〉 ∝∑S: closed loop |S〉) as the target
state for both classical shadows and NNQST. The results are shown in Figure 3. Neural network
tomography seems to require a number of samples that scales exponentially in the system size n
(left). In contrast, the required samples for classical shadows is once more completely independent of
the system size. The exponential scaling of NNQST may be rooted in some observed failures of deep
learning [17] for learning patterns with combinatorial structures.

4 Outlook

Extension to learning quantum dynamics It would be highly interesting to extend the idea of
classical shadows to quantum dynamics and time evolutions. Is it possible to learn an approximate
classical model of unknown quantum processes that allow for accurately predicting their action on an
exponential number of input states?

Synthesis with modern machine learning An interesting direction would be to combine machine
learning and classical shadows, e.g. by training generative models using classical shadows as the input
data. A potential benefit comes from the inductive bias imposed by the neural network, which may be
biased towards the physical corner of otherwise exponentially large Hilbert spaces. While efficiently
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training neural networks with unitary-rotated measurements may be challenging, we believe that a
synthesis of machine learning and classical shadows may allow for achieving improved performance
with strong theoretical guarantees.

Acknowledgments:

The authors want to thank Victor Albert, Fernando Brandão, John Preskill, Ingo Roth, Joel Tropp, and
Thomas Vidick for valuable inputs and inspiring discussions. Leandro Aolita and Giuseppe Carleo
provided helpful advice regarding presentation. Our gratitude extends, in particular, to Joseph Iverson
who helped us devising a numerical sampling strategy for toric code ground states. HH is supported
by the Kortschak Scholars Program. RK acknowledges funding provided by the Office of Naval
Research (Award N00014-17-1-2146) and the Army Research Office (Award W911NF121054).

References
[1] S. Aaronson. Shadow tomography of quantum states. In Proceedings of the 50th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2018, pages 325–338, New York, NY,
USA, 2018. ACM.

[2] S. Aaronson and G. N. Rothblum. Gentle measurement of quantum states and differential
privacy. In To appear on the 51th Annual ACM SIGACT Symposium on Theory of Computing.
ACM, 2019.

[3] J. Carrasquilla, G. Torlai, R. G. Melko, and L. Aolita. Reconstructing quantum states with
generative models. Nat. Mach. Intell., 1(3):155, 2019.

[4] C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Reviews of modern physics,
89(3):035002, 2017.

[5] E. Dennis, A. Kitaev, and J. Preskill. Topological quantum memory. volume 43, pages
4452–4505. 2002. Quantum information theory.

[6] D. Gottesman. Stabilizer codes and quantum error correction. Caltech Ph. D. PhD thesis,
Thesis, eprint: quant-ph/9705052, 1997.

[7] M. Guta, J. Kahn, R. Kueng, and J. A. Tropp. Fast state tomography with optimal error bounds.
arXiv preprint arXiv:1809.11162, 2018.

[8] J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu. Sample-optimal tomography of quantum states.
IEEE T. Inform. Theory, 63(9):5628–5641, 2017.

[9] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures
from a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188, 1986.

[10] S. P. Jordan, K. S. Lee, and J. Preskill. Quantum algorithms for quantum field theories. Science,
336(6085):1130–1133, 2012.

[11] R. Kueng and D. Gross. Qubit stabilizer states are complex projective 3-designs. arXiv preprint
arXiv:1510.02767, 2015.

[12] A. S. Nemirovsky and D. B. a. Yudin. Problem complexity and method efficiency in optimization.
A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1983. Translated
from the Russian and with a preface by E. R. Dawson, Wiley-Interscience Series in Discrete
Mathematics.

[13] R. O’Donnell and J. Wright. Efficient quantum tomography. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 899–912. ACM, 2016.

[14] J. Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

[15] J. Preskill. Simulating quantum field theory with a quantum computer. arXiv preprint
arXiv:1811.10085, 2018.

5



[16] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves. Symmetric informationally
complete quantum measurements. J. Math. Phys., 45(6):2171–2180, 2004.

[17] S. Shalev-Shwartz, O. Shamir, and S. Shammah. Failures of gradient-based deep learning.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
3067–3075. JMLR. org, 2017.

[18] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[19] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo. Neural-network
quantum state tomography. Nat. Phys., 14(5):447, 2018.

[20] Z. Webb. The clifford group forms a unitary 3-design. arXiv preprint arXiv:1510.02769, 2015.

[21] S. Zhou, M. Zhang, J. Preskill, and L. Jiang. Achieving the heisenberg limit in quantum
metrology using quantum error correction. Nature communications, 9(1):78, 2018.

[22] H. Zhu. Multiqubit clifford groups are unitary 3-designs. Phys. Rev. A, 96:062336, Dec 2017.

6


	Introduction
	Main Results
	Numerical Experiments
	Outlook

