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Abstract

A quantum generalization of Natural Gradient Descent is presented as part of a
general-purpose optimization framework for variational quantum circuits. The
optimization dynamics is interpreted as moving in the steepest descent direction
with respect to the Quantum Information Geometry, corresponding to the real
part of the Quantum Geometric Tensor (QGT), also known as the Fubini-Study
metric tensor. An efficient algorithm is presented for computing a block-diagonal
approximation to the Fubini-Study metric tensor for parametrized quantum circuits,
which may be of independent interest.

1 Introduction

Variational optimization of parametrized quantum circuits is an integral component for many hy-
brid quantum-classical algorithms which are arguably the most promising applications of Noisy
Intermediate-Scale Quantum (NISQ) computers [21]. Applications include the Variational Quantum
Eigensolver (VQE) [20], Quantum Approximate Optimization Algorithm (QAOA) [5] and Quantum
Neural Networks (QNNs) [6, 10, 23].

All the above are examples of stochastic optimization problems whereby one minimizes the expected
value of a random cost function over a set of variational parameters, using noisy estimates of the cost
and/or its gradient. In the quantum setting these estimates are obtained by repeated measurements of
some Hermitian observables for a quantum state which depends on the variational parameters.

A variety of optimization methods have been proposed in the variational quantum circuit literature for
determining optimal variational parameters including derivative-free (zeroth-order) methods such as
Nelder-Mead, finite-differencing [8] or SPSA [25]. Recently the possibility of exploiting direct access
to first-order gradient information has been explored. Indeed quantum circuits have been designed to
estimate such gradients with minimal overhead compared to objective function evaluations [22].

One motivation for exploiting first-order gradients is theoretical: in the convex case, the expected error
in the objective function using the best known zeroth-order stochastic optimization algorithm scales
polynomially with the dimension d of the parameter space, whereas Stochastic Gradient Descent
(SGD) converges independently of d. Another motivation stems from the empirical success of
stochastic gradient methods in training deep neural networks, which involve minimizing non-convex
objective functions over high-dimensional parameter spaces.

The application of SGD to deep learning suffers from the caveat that successful optimization hinges
on careful hyper-parameter tuning of the learning rate (step size) and other hyper-parameters such
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as Momentum. Indeed a vast literature has developed devoted to step size selection (see e.g. [11]).
The difficulty of choosing a step size can be understood intuitively in the simple quadratic bowl
approximation, where the optimal step size depends on the maximum eigenvalue of the Hessian, a
quantity which is difficult to calculate in high dimensions. In practical applications the step size
selection problem is overcome by using adaptive methods of stochastic optimization such as Adam
[14] which have enjoyed wide adoption because of their ability to dynamically select a step size by
maintaining a history of past gradients.

Independently of the improvements arising from historical averaging as in Momentum and Adam, it
is natural to ask if the geometry of quantum states favors a particular optimization strategy. Indeed, it
is well-known that the choice of optimization is intimately linked to the choice of geometry on the
parameter space [19]. In the most well-known case of vanilla gradient descent, the relevant geometry
corresponds to the l2 geometry as can be seen by rewriting the iterative update rule as

θt+1 := θt − η∇L(θt) = arg min
θ∈Rd

[
[〈θ − θt,∇L(θt)〉+

1

2η
‖θ − θt‖22

]
, (1)

where L is the loss as a function of the variational parameters θ ∈ Rd and η is the step size. Thus,
vanilla gradient descent moves in the steepest descent direction with respect to the l2 geometry.

In the deep learning literature, it has been argued that the l2 geometry is poorly adapted to the space of
weights of deep networks, due to their intrinsic parameter redundancy [19]. The Natural Gradient [1],
in contrast, moves in the steepest descent direction with respect to the Information Geometry. This
natural gradient descent is advantageous compared to the vanilla gradient because it is invariant under
arbitrary re-parametrizations [1] and moreover possesses an approximate invariance with respect to
over-parametrizations [17], which are typical for deep neural networks.

In a similar spirit, the quantum circuit literature has investigated the impact of geometry on dynamics
of variational algorithms. In particular, it was shown that under the assumption of strong convexity,
the l2 geometry is sub-optimal in some situations compared to the l1 geometry [9]. The intuitive
argument put forth favoring the l1 geometry is that some quantum state ansatze can be physically
interpreted as a sequence of pulses of Hamiltonian evolution, starting from a fixed reference state. In
this particular parametrization, each variational parameter can be interpreted as the duration of the
corresponding pulse. This is not the only useful parametrization of quantum states, however, and it is
thus desirable to find a descent direction which is not tied to any particular parametrization.

Ref. [9] leaves open the problem of finding the relevant geometry for general-purpose variational
quantum algorithms and this paper seeks to fill that void. The contributions of this papers are as
follows:

• We point out that the demand of invariance with respect to arbitrary reparametrizations can be
naturally fulfilled by introducing a Riemannian metric tensor on the space of quantum states, and
that the implied descent direction is invariant with respect to reparametrizations by construction.

• We note that the space of quantum states is naturally equipped with a Riemannian metric, which
differs from l2 and l1 geometries explored previously. In fact, in the absence of noise, the space of
quantum states is a complex projective space, which possesses a unique unitarily-invariant metric
tensor called the Fubini-Study metric tensor. When restricted to the submanifold of quantum states
defining the parametric family, the Fubini-Study metric tensor emerges as the real part of a more
general geometric quantity called the Quantum Geometric Tensor (QGT).

• We show that the resulting gradient descent algorithm is a direct quantum analogue of the Natural
Gradient in statistics literature, and reduces to it in a certain limit.

• We present quantum circuit construction which computes a block-diagonal approximation to the
Quantum Geometric Tensor and show that a simple diagonal preconditioning scheme outperforms
vanilla gradient descent in terms of number of iterates required to achieve convergence

2 Theory

Consider the set of probability distributions onN elements; that is, the set of positive vectors p ∈ RN ,
p � 0 which are normalized in the 1-norm ‖p‖1 = 1. The function d(p, q) = arccos(〈√p,√q〉) is
easily shown to be metric (Fisher-Rao metric) on the probability simplex ∆N−1, where

√
p and

√
q

denote the elementwise square root of the probability vectors in the probability simplex p, q ∈ ∆N−1.
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Now consider a parametric family of strictly positive probability distributions pθ � 0 indexed by real
parameters θ ∈ Rd. It can be shown that the infinitesimal squared line element between two members
of the parametric family is given by d2(pθ, pθ+dθ) = 1

4

∑
(i,j)∈[d]2 Iij(θ)dθ

idθj , where Iij(θ) are the
components of a Riemannian metric tensor (with possible degeneracies) called the Fisher Information
Matrix. Letting pθ(x) denote the component of the probability vector pθ corresponding to x ∈ [N ]
we have,

Iij(θ) =
∑
x∈[N ]

pθ(x)
∂ log pθ(x)

∂θi
∂ log pθ(x)

∂θj
. (2)

Now consider a N -dimensional complex Hilbert space CN . Given a vector ψ ∈ CN which is
normalized in the 2-norm ‖ψ‖2 = 1, a pure quantum state is defined as the projection Pψ = |ψ〉〈ψ|
onto the one-dimensional subspace spanned by the unit vector ψ. In direct analogy with the simplex,
the function d(Pψ, Pφ) = arccos(|〈ψ, φ〉|) is easily shown to be a metric (Fubini-Study metric) on
the space of pure states where ψ, φ ∈ CN are unit vectors. Letting ψθ denote a parametric family
of unit vectors, the infinitesimal squared line element between two states defined by the parametric
family is given by d2(Pψθ , Pψθ+dθ

) =
∑

(i,j)∈[d]2 gij(θ) dθidθj , where gij(θ) = Re[Gij(θ)] is the
Fubini-Study metric tensor, which can be expressed in terms of the following Quantum Geometric
Tensor (see [26] for a review),

Gij(θ) = 〈∂iψθ, ∂jψθ〉 − 〈∂iψθ, ψθ〉 〈ψθ, ∂jψθ〉 . (3)

Consider a parametric family of unitary operatorsU(θ) ∈ U(N) which are indexed by real parameters
θ ∈ Rd. Given a fixed reference unit vector |0〉 ∈ CN and a Hermitian operator H = H† acting
on CN , we consider the optimization problem minθ∈Rd L(θ) , where L(θ) = 1

2 〈ψθ, Hψθ〉 and
ψθ = Uθ|0〉. Global optimization of the nonconvex objective function L(θ) is impractical, so we
instead propose to search for local optima by iterating the discrete-time dynamical system,

θt+1 = arg min
θ∈Rd

[
〈θ − θt,∇L(θt)〉+

1

2η
‖θ − θt‖2g(θt)

]
, (4)

where g(θt) is the symmetric matrix with (i, j) component Re[Gij(θt)]. The minimizer is given in
terms of the pseudo-inverse g+(θt) as follows, θt+1 = θt − η g+(θt)∇L(θt). In the continuous-time
limit corresponding to vanishing step size η → 0, the dynamics (2) is equivalent to imaginary-time
evolution within the variational subspace according to the Hamiltonian H .

In a digital quantum computer the Hilbert space dimension N = 2n is exponential in the number of
qubits n ∈ N and the Hilbert space has a natural tensor product decomposition into two-dimensional
factors CN = C2n = (C2)⊗n. A parametric family of unitaries relevant to variational quantum
algorithms consists of decompositions into a products of L ≥ 1 non-commuting layers of unitaries.
Specifically, assume that the variational parameter vector is of the form θ = θ1⊕· · ·⊕θL ∈ Rd where
⊕ denotes the direct sum (concatenation) and consider a unitary operator acting on n qubits of the form
UL(θ) := VL(θL)WL · · ·V1(θ1)W1, where Vl(θl) andWl are parametric and non-parametric unitary
operators, respectively. For later convenience, we introduce the notation U[l1:l2] := Vl2Wl2 · · ·Vl1Wl1
for representing subcircuits between layers l1 ≤ l2 Moreover, we define the convenience state
ψl := U[1:l]|0〉 for each layer l ∈ [L],

Computing the QGT corresponding to a parametrized quantum circuit is a challenging task. We
will show, nevertheless, that block-diagonal components of the tensor can be efficiently computed
on a quantum computer. Consider the lth layer of the circuit parametrized by θl and let ∂i and
∂j denote the partial derivative operators acting with respect to any pair of components of θl (not
necessarily distinct). For each layer l ∈ [L] there exist Hermitian generator matrices Ki and Kj such
that, ∂iVl(θl) = −iKiVl(θl) and ∂jVl(θl) = −iKjVl(θl) where for simplicity we have dropped the
layer index l from the Hermitian generator Kj . The commutativity of the partial derivative operators
combined with unitarity of Vl(θl) implies that [Ki,Kj ] = 0. It follows from unitarity of the subcircuit
U(l:L] and Hermiticity of the generator Ki that 〈∂iψθ|∂jψθ〉 = 〈ψl|KiKj |ψl〉 . Similarly, the so-
called Berry connection is given by i〈ψθ|∂jψθ〉 = 〈ψl|Kj |ψl〉 . Combining these expressions we
obtain the following form for the lth block of the QGT,G(l)

ij = 〈ψl|KiKj |ψl〉−〈ψl|Ki|ψl〉〈ψl|Kj |ψl〉
In fact, since KiKj is Hermitian, the block-diagonal of the Fubini-Study metric tensor coincides
with the block-diagonal of the QGT. The preceding calculation demonstrates the following key facts:

1. The lth block of the Fubini-Study metric tensor can be evaluated in terms of quantum expectation
values of Hermitian observables.
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Figure 1: The cost function value for n = 7, 9, 11 qubits and l = 5 layers as function of training
iteration for four different optimization dynamics. 8192 shots (samples) are used per required
expectation value during optimization.

2. The states ψl defining the quantum expectation values are prepared by subcircuits of the full
quantum circuit and are thus experimentally realizable.

3 Numerical Experiments

In order to validate the choice of geometry, numerical experiments were conducted to compare
the Quantum Natural Gradient approach against vanilla gradient descent and the Adam optimizer.
These experiments were performed with the open-source quantum machine learning software library
PennyLane [2, 22]. New functionality was added for efficiently computing the block-diagonal g(l)ij
and diagonal gii approximations of the Fubini-Study metric tensor for arbitrary n-qubit parametrized
quantum circuits on quantum hardware.

For numerical verification, we considered the circuit of [20], which consists of an initial fixed
layer of Ry(π/4) gates acting on n qubits, followed by L layers of parametrized Pauli rotations
interwoven with 1D ladders of controlled-Z gates, and target Hermitian observable chosen to be the
same two-Pauli operator Z1Z2 acting on the first and second qubit which has a ground state energy
of −1. Starting from the same random initialization of Ref. [20], we optimize the parametrized Pauli
rotation gates using vanilla gradient descent, the Adam optimzer, and the Quantum Natural Gradient
optimizer, with both the block-diagonal and diagonal approximations. The results are shown in Fig.
1 for n = 7, 9, 11 qubits, L = 5 layers, and with the optimization performed using 8192 samples
per expectation value. In all cases the vanilla gradient descent fails to find the minimum of the
objective function, while the Quantum Natural Gradient descent finds the minimum in a small number
of iterations, in both block-diagonal and strictly diagonal approximation. In addition, we present
a comparison with the Adam optimizer which is a non-local averaging method. In this particular
circuit, Adam is capable of finding the minimum but requires a larger number of iterations than the
Quantum Natural Gradient. Furthermore, the improvement afforded by the Quantum Natural Gradient
optimizer appears more significant with increasing qubit number. Note that for n = 11, we do not
include the block-diagonal approximation, due to the increased classical overhead associated with
numerically computing the shared eigenbasis for each parametrized layer. However, this overhead
can likely be negated by implementing the techniques of [4] and [7]. To investigate the effects of
variable circuit depth, the numerical experiment was repeated with n = 9 qubits, and parametric
quantum circuits with L = 3, 4, 5, 6 layers. The results are shown in Fig. 2, highlighting that the
Quantum Natural Gradient optimizer retains its advantage with increasing circuit depth.

4 Relationship with existing work

It is easy to see that the Quantum Natural Gradient subsumes the Natural Gradient as a special case.
Indeed if {|x〉 : x ∈ [N ]} denotes an orthonormal basis for CN then one can easily verify that for the
family of unit vectors defined by ψθ =

∑
x∈[N ]

√
pθ(x) |x〉 we have Gij(θ) = 1

4Iij(θ). In contrast
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Figure 2: The cost function value for n = 9 qubits and l = 3, 4, 5, 6 layers as function of training
iteration for four different optimization dynamics. 8192 shots (samples) are used per required
expectation value during optimization.

to classical statistical learning, however, there is no direct relationship between the quantum Fisher
Information and the curvature of the objective. In the Variational Quantum Monte Carlo literature, the
Stochastic Reconfiguration algorithm [24] has been developed which produces a stochastic estimate
of (2) by classical sampling from the Born probability distribution corresponding to ψθ. An associated
real-time evolution algorithm, which exploits the the imaginary part Im[Gij(θ)] of the Quantum
Geometric Tensor (3) has been developed in [16] and subsequently demonstrated on quantum
hardware in [3]. For details on the geometry of the time-dependent variational principle we refer the
reader to [15, Proposition 2.4]. Variational imaginary-time evolution on hybrid quantum-classical
devices has been previously investigated in [18, 12, 13]. In these works, the choice of optimization
geometry can be shown to correspond to the unit sphere SN−1 = {ψ ∈ CN : ‖ψ‖2 = 1}, rather
than the complex projective space CPN−1 utilized in this paper. Recently, Ref. [27] appeared which
considers general evolution of variational density matrices in both real and imaginary time, from a
different perspective. By restricting their proposal to pure state projectors (elements of CPN−1) they
find an algorithm equivalent to ours.
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