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Abstract

We investigate the performance of a jet identification algorithm based on an in-
teraction network to identify high-momentum Higgs bosons decaying to bottom
quark-antiquark pairs and distinguish them from ordinary jets originating from
the hadronization of quarks and gluons. The algorithm’s inputs are features of
the reconstructed charged particles in a jet and the secondary vertices associated
to them. Describing the jet shower as a combination of particle-to-particle and
particle-to-vertex interactions, an interaction network is trained to learn a jet rep-
resentation with which to classify the jet. The algorithm is trained on simulated
samples of accurate LHC collisions, released by the CMS collaboration on the
CERN Open Data Portal. The interaction network achieves a drastic improvement
in the identification performance with respect to state-of-the-art algorithms.

1 Introduction

Jets are collimated cascades of particles produced at particle accelerators. Quarks and gluons
originating from hadron collisions, such as the proton-proton collisions at the CERN Large Hadron
Collider (LHC), generate a cascade of other particles (mainly other quarks or gluons) that then
arrange themselves into hadrons. The stable and unstable hadrons’ decay products are observed by
large particle detectors, reconstructed by algorithms that combine the information from different
detector components, and then clustered into jets, using physics-motivated sequential recombination
algorithms such as those described in Ref. [1–3]. Jet identification, or tagging, algorithms are
designed to identify the nature of the particle that initiated a given cascade, inferring it from the
collective features of the particles generated in the cascade. Recently, several approaches based on
deep learning have been proposed to optimize jet tagging algorithms using convolutional neural
networks [4–9], physics-inspired dense neural networks [10–12], or recurrent and recursive neural
networks [13–15]. For instance, the LHC collaborations and other researchers have investigated the
optimal way to combine substructure, tracking, and vertexing information to enhance the tagging
efficiency for high transverse momentum (pT) H→ bb decays [16–20]. This is an important task
in particle physics because measurements of high-pT H → bb decays may help resolve the loop
induced and tree-level contributions to the gluon fusion process [21, 22] and provide an alternative
approach to study the top quark Yukawa coupling in addition to the ttH process [23, 24].
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In this work, we propose to accomplish this task with an interaction network (IN). In Ref. [25], INs
were introduced to describe complex physical systems and predict their evolution after a certain
amount of time. Particle jets, distributed sensor networks, and power grids are examples of systems
that involve multiple entities with complex interactions. Graphs provide a natural representation
for encoding such relational information without requiring an arbitrary ordering of elements, a
fixed-Euclidean-grid assumption, special handling of sparse inputs, or substantial pre-processing.

Geometric deep learning, including graph convolution networks [26–31] and graph generative
models [32, 33], leverages a graph representation to learn directly from structured data. In particle
physics, graph neural networks have recently been used for jet tagging, matching the performance of
other deep learning approaches [34–36], for event classification [37, 38], charged particle tracking in
a silicon detector [39], pileup subtraction at the LHC [40], and particle reconstruction in irregular
calorimeters [41] as well as in the IceCube experiment [38]. In this paper, we extend the use of graph
neural networks to the case of H→ bb tagging. In particular, we investigate the use of INs to learn a
collective representation of the tracking, vertexing, and substructure properties of the jet and employ
this optimized representation to enhance the tagging efficiency. By placing charged particles and
secondary vertices on a graph, the network can learn a representation of each particle-to-particle
and particle-to-vertex interaction, and exploit this information to categorize a given jet as signal
(H→ bb) or background (QCD).

The study is carried out using a sample of fully-simulated LHC collision events, released by the
CMS collaboration on the CERN Open Data Portal [42]. The open data simulation allows for a
more in depth and realistic study of the efficacy of machine learning methods on high-energy physics
experiments. We compare the performance to a different algorithm that we trained with open data for
H→ bb tagging based on the architecture of the deep double-b (DDB) tagger created by the CMS
collaboration [17]. The DDB tagger is a convolutional and recurrent neural network model based on
the 27 high-level features used in Ref. [16], as well as 8 charged particle features, and 2 properties of
secondary vertices associated with the jet.

2 Data Samples

The dataset is obtained from the samples provided on CERN Open Data Portal, which consist of
CMS simulated data from H → bb and QCD processes corresponding to the 2016 data-taking
conditions [43]. Jets are clustered from the reconstructed particles using the anti-kT algorithm [3, 44]
with a jet-size parameter R = 0.8 (AK8 jets) and subsequently their energy is corrected. In
order to remove soft, wide-angle radiation from the jet, the soft-drop (SD) algorithm [45, 21] is
applied, with angular exponent β = 0, soft cutoff threshold zcut < 0.1, and characteristic radius
R0 = 0.8 [46]. The soft-drop mass (mSD) is then computed from the four-momenta of the remaining
constituents. The dataset is reduced by requiring the jets to have 300 < pT < 2400 GeV and
40 < mSD < 200 GeV. The IN uses 30 features related to charged particles and 14 features related
to the secondary vertices described in Ref. [43].

In this study, we use samples consisting of 3.9 million H → bb jets and 1.9 million inclusive
QCD jets, split into training, validation, and test samples with proportions of 80%, 10%, and 10%,
respectively.

3 Model architecture

The IN is based on two input collections comprising Np particles, each represented by a feature
vector of length P , and Nv vertices, each represented by a feature vector of length S. The input
consists of an ensemble of X and Y matrices, with sizes P ×Np and P ×Nv , respectively.

A particle graph Gp is constructed by connecting each particle to each other particle through Npp =
Np(Np − 1) directed edges. Similarly, a particle-vertex graph Gpv is constructed by connecting each
particle to each vertex through Npv = NpNv undirected edges. For the graph Gp, a receiving matrix
(RR) and a sending matrix (RS) are defined, both of size Np × Npp. For the second graph, the
corresponding adjacency matrices RK (of size Np ×Nvp) and RV (of size Nv ×Nvp) are defined.
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Figure 1: Illustration of the IN architecture.

The input processing begins by creating the 2P ×Npp particle-particle interaction matrix Bpp and
the (P + S)×Nvp particle-vertex interaction matrix Bvp defined as:

Bpp =

(
X ·RR

X ·RS

)
, (1)

Bvp =

(
X ·RK

Y ·RV

)
, (2)

where · indicates the ordinary matrix product. Processing each column of Bpp, one builds an internal
representation of the particle-particle interaction with a neural network fppR : R2P 7→ RDE , where
DE is the size of the internal representation. This results in an effect matrix: Epp with dimensions
DE ×Npp. We similarly build the Evp matrix, with dimensions DE ×Nvp, using a neural network
fvpR : RP+S 7→ RDE .

We then propagate the particle-particle interactions back to the particles receiving them, by building
Epp = EppR

>
R with dimension DE ×Np. We also build Evp = EvpR

>
V with dimension DE ×Np,

which collects the information of the particle-vertex interactions for each particle and across all of
the vertices.

The next step consists of building the C matrix, with dimensions (P + 2DE)×NO, by combining
the input information for each particle (X) with the learned representation of the particle-particle
(Epp) and particle-vertex (Evp) interactions:

C =

 X
Epp

Evp

 . (3)

The final aggregator combines the input and interaction information to build the post-interaction
representation of the graph, summarized by the matrix O, with dimensions DO ×Np. The aggregator
consists of a function fO : RP+2DE 7→ RDO , which computes the elements of the O matrix. The
elements of the O matrix are computed by a function fO : RP+2DE 7→ RDO , which returns the
post-interaction representation for each of the input particles.

The learned representation of the post-interaction graph, represented by the elements of the O matrix,
can be used to solve the specific task at hand. We sum O along each row to produce a feature vector
O with length DO for the jet as a whole. This is passed to a final function φC : RDO 7→ RN , which
produces the output of the classifier. The overall architecture of the IN is illustrated in Fig. 1. We
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stress the fact that the chosen architecture makes the outcome of the IN tagger independent of the
order used to label the Np input particles and Nv input vertices.

We train the model by minimizing the categorical cross-entropy loss using the Adam optimizer [47]
with an initial learning rate of 10−4 and a minibatch size of 128 for up to 100 epochs, enforcing early
stopping [48] on the validation loss with a patience of 5 epochs.

4 Decorrelation with the jet mass

Many possible applications of this algorithm would require that the tagger score be uncorrelated from
the jet mass so that a selection based on the tagger score does not change the jet mass distribution,
particularly for the background events. This is especially crucial for the applicability of modeling the
background jet mass distribution with an analytic function in the final physics analysis.

We test 3 different techniques to minimize the IN tagger’s effects on the jet mass distribution of the
selected events: (i) performing an adversarial training [49–51], where the classifier is penalized if its
output score can be used to reconstruct the jet mass; (ii) removing or reweighting events [52] such that
the background jet mass distribution is indistinguishable from the signal jet mass distribution then
training the network; and (iii) defining mass-dependent thresholds as in the “designing decorrelated
taggers” (DDT) procedure [53], where each selection threshold corresponds to k-percentile of the
background’s output score distribution given a mass value, with (1−k) being the overall false-positive
rate of the classifier’s working point. A mass-decorrelation technique is also applied to the DDB
tagger using the Kullback–Leibler divergence as a penalty in the loss function.

5 Performance

As shown in Fig. 2 (left), the IN provides an improved performance with respect to our recreation of
the DDB tagger [17], which was trained on the same CMS open data simulation as the IN. At a 1%
FPR, the IN tagger outperforms the DDB tagger by 36% in true positive rate (TPR). Likewise, at an
80% TPR, the IN tagger yields a factor of 4 smaller false positive rate (FPR) than the the DDB tagger.

Fig. 2 (right) shows an illustration of how the background jet mass distribution changes after applying
a threshold on the tagger score for different decorrelation algorithms. The DDT procedure provides
the best decorrelation of the IN tagger followed by the reweighted training and the domain-adversarial
training, respectively. After applying the mass decorrelation techniques, the performance worsens
slightly but still significantly outperforms the DDB taggers. At a 1% FPR, the DDT-decorrelated IN
tagger has a TPR of 76% compared to the decorrelated DDB tagger with a 51% TPR, corresponding
to an improvement of 49%.

6 Conclusions

We demonstrate a novel jet-tagging technique using graph representations of the jet’s constituents
and secondary vertices based on an interaction network. The IN can operate on a variable number of
jet constituents and secondary vertices and does not depend on the ordering schemes of these objects.
Different mass decorrelation techniques are explored to minimize the selection bias of the classifier
output toward any values of the jet mass. The IN significantly outperforms an alternative tagger based
on one created by the CMS collaboration and also allows for more flexible representations of jet data.
These results motivate further exploration of using interaction networks for different object tagging
in experimental high energy physics.
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