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Abstract

Numerical simulation of weather is constrained due to the high computational
cost of integrating the coupled PDEs that govern atmospheric motion. Even the
finest-scale numerical weather prediction models cannot model the scales that
dictate weather in urban areas and regions with high topographic complexity,
like mountains. Thus, several statistical methods have been developed in the
climate community to upsample numerical model output to finer resolutions. This
is conceptually similar to image super-resolution (SR) [1] and in this work we
report the results of applying SR methods to this problem. We compare several
methods and find ESRGAN [2] to give high-fidelity qualitative recovery but poorer
performance on metrics such as MSE. However, the high frequency power spectrum
is captured remarkably well by ESRGAN, virtually identical to the real data,
while other method’s fidelity drops significantly at high frequency. We use this
observation to modify our approach to optimize the power spectrum directly in
our loss function, and call this technique PSD-Net. We achieve better performance
across all metrics, along with increased stability and faster training time.

1 Motivation

Global climate models are limited to ~100 km resolution, while numerical weather prediction
models that produce daily forecasts and severe weather warnings are limited to ~3 km. However,
accurate assessment of climate and extreme weather impacts near human populations would benefit
substantially from finer resolution. While several methods have been developed for upsampling
climate models output to finer resolutions, they consist for the most part of complex interpolation
methods (see e.g. [3]). In this paper we explore deep learning methods to upsample weather model
output.

Deep learning approaches have only recently started to receive attention in the earth sciences commu-
nity [4]. Over traditional numeric-based approaches, they could address some key issues in climate
modeling:

1. A pipeline trained end-to-end that automatically learns optimal filters and transformations
between inputs (i.e., remote-sensing, in-situ, and simulation data) and their relationship to
the parameters of interest (e.g., wind intensity, precipitation), can drastically accelerate the
creation of practical ad-hoc relationships between observational datasets and models.

2. An end-to-end differentiable model will allow for the exploration of climate model sensitivi-
ties that lead to bias including the influence of the meteorological forcing dataset. Slight
perturbations in precipitation phase, intensity, and/or location, short/longwave radiation,
wind speed and direction, humidity, and, temperature, could be used to understand the
downstream implications on variables that are difficult to measure or model directly.

3. Generative models can be run in parallel, and do not necessarily require iterative schemes to
model data, allowing them to run quickly even on low-grade consumer hardware.
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2 Methods and Data

Figure 1: Example wind speeds from the WRF model output, shown every 4 hours over 1 day.

Figure 2: Output of each model and the input that produced it. Each row is one image, and we can
see some finer detail in the zoomed view, highlighted in the red box.

2.1 Dataset

We use 15 years of wind velocity fields from a numerical simulation of the WRF (Weather Research
and Forecasting) model over Southern California (see [5] for details — we use region d04 from
2001-2015), gathered hourly (Figure 1), for a total of about 60,000 data points, represented as grids.
In the rest of this work, we shall call these grids "images".

Each image is of size 153× 153, where each pixel represents the average wind speed over a 1.5 km
× 1.5 km region. They are stored as a 2-D array of 32-bit floats, linearly scaled to [0, 1]. For ease of
upsampling, we clip a single row and column to resize our images to 152× 152. To generate input
data, we downsample our images by a factor of 4 in each dimension.

The dataset is shuffled and split into training and validation sets, with 5% (3,000 images) held out for
validation.

2



Figure 3: Architectures and PSD plot

(a) Architectures of models used. (b) Note that ESRGAN tracks the true data far
more closely than the other models.

2.2 Method

2.2.1 Bicubic Upsampling

Table 1: Results

Model PSNR MSE MAE KL

ESRGAN 32.74 5.3e-4 0.0148 0.008
SR-CNN 36.06 2.4e-4 0.0091 0.015
Bicubic 35.52 2.7e-4 0.0097 0.006
PSD-Net 39.3 1.1e-4 0.0066 0.005

Bicubic interpolation is useful as a baseline to compare
against. There are no trainable parameters, so we simply
upsample our validation set.

2.2.2 SR-CNN

SR-CNN [6] is a classic deep learning model used for
image SR. As preprocessing, a low-resolution image is
first upsampled to the desired size by another method like
bicubic interpolation. The upsampled image is then passed
to a CNN, essentially sharpening it. (See Figure 3a for a
high-level overview.)

We train for 200 epochs with a batch size of 128, the Adam optimizer, and a learning rate of 0.001.
For the upsampling preprocessing step, we use bicubic upsampling.

2.2.3 ESRGAN

ESRGAN is an conditional GAN designed for image SR. We pass the generator G a batch of low-
resolution images, which are upsampled by G and then passed to the discriminator D, as is standard
for GANs. There is also a "pixel loss", which compares the MSE between the SR and ground truth
images.

We follow the training procedure described in [2]. We use a batch size of 16 images and train for 200
epochs.

3 Evaluation

Table 1 gives an overview of final performance on the validation set. PSNR (peak signal to noise
ration), MSE and MAE (mean absolute error) are averaged over all images in the validation set. "KL"
represents the KL divergence between the empirical distributions of the generated images and the
ground truth.
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Notice that ESRGAN performs worst on these metrics. But the generated images tell quite a different
story. As we see in Figure 2, ESRGAN generates clearer images than most other methods. Zooming
in on the highlighted red box reveals that the images generated by ESRGAN are sharper.

PSNR and MSE have been noted as poor indicators of image quality, as they fail to capture the
underlying dynamics of images well. A key metric that illustrates the spatial resolution and higher
moments of the data distribution is the power spectral density, shown in Figure 3b. The PSD plot
reveals the power of ESRGAN to capture the high frequency information present in the wind field. In
fact, ESRGAN’s spectrum is so close to that of the true data that they are nearly indistinguishable,
whereas SR-CNN and bicubic upsampling fall off significantly at higher frequencies. This is perhaps
not surprising as the upsampling and SR-CNN are fundamentally methods of interpolation, whereas
ESRGAN is learning the data distribution at all scales. This suggests that ESRGAN is able to capture
the true data distribution.

If we remove the adversarial loss from ESRGAN and just optimize the MSE of the generated pixels,
we see performance similar to SR-CNN. This suggests that the adversarial loss only helps match the
higher frequencies of the data, and hurts otherwise.

4 PSD-Net

We can use these observations to create a better model. The adversarial loss optimizes PSD indirectly,
but PSD is a differentiable function. Formally, PSD(x) := |F (x)|2, where F is the 2D real-to-
complex Discrete Fourier Transform.

This lets us replace the adversarial loss term with PSD to directly optimize the spectra, in
a fully-supervised manner. Concretely, we take the generator G from ESRGAN, remove the
discriminator completely, and train using a loss of the form Loss(l, h) := MSE(G(l), h) +
MSE(PSD(G(l)),PSD(h)), where l and h are a batch of low and high-resolution images, G is
our generator. We then backpropagate to optimize both MSE and PSD directly. We call this model
PSD-Net, and it gives the best metrics of all (Table 1), along with visually superior images (see
Figure 2) and a closely matching PSD plot (Figure 3b).

PSD-Net trains considerably faster than ESRGAN, as it is stable with larger batch sizes (we used a
batch size of 128), and does not require training a discriminator.

5 Future work

We plan to see if PSD-based losses can be used in other areas of physical science to achieve similar
results. With respect to the wind problem, our technique does a good job reproducing single images.
However, we do not currently deal with a sequence of images over time or space. For example,
capturing the effects of winds over a larger surrounding region, e.g. from a coarse climate model,
would help in regional climate prediction. In addition, being able to capture a sequential time series
would also be beneficial for capturing synoptic weather patterns such as fronts or tropical cyclones.
Both will be the goals of future work.

We also plan to incorporate additional variables such as temperature and pressure, and to see if models
based on attention mechanisms can improve accuracy.
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